Skip to main content

Advertisement

Log in

In vivo imaging of embryonic stem cell therapy

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Embryonic stem cells (ESCs) have the most pluripotent potential of any stem cell. These cells, isolated from the inner cell mass of the blastocyst, are “pluripotent,” meaning that they can give rise to all cell types within the developing embryo. As a result, ESCs have been regarded as a leading candidate source for novel regenerative medicine therapies and have been used to derive diverse cell populations, including myocardial and endothelial cells. However, before they can be safely applied clinically, it is important to understand the in vivo behavior of ESCs and their derivatives. In vivo analysis of ESC-derived cells remains critically important to define how these cells may function in novel regenerative medicine therapies. In this review, we describe several available imaging modalities for assessing cell engraftment and discuss their strengths and limitations. We also analyze the applications of these modalities in assessing the utility of ESCs in regenerative medicine therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981;292(5819):154–6.

    Article  PubMed  CAS  Google Scholar 

  2. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981;78(12):7634–8.

    Article  PubMed  CAS  Google Scholar 

  3. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282(5391):1145–7.

    Article  PubMed  CAS  Google Scholar 

  4. Schuldiner M, Eiges R, Eden A, Yanuka O, Itskovitz-Eldor J, Goldstein RS, et al. Induced neuronal differentiation of human embryonic stem cells. Brain Res 2001;913(2):201–5.

    Article  PubMed  CAS  Google Scholar 

  5. Beeres SL, Bengel FM, Bartunek J, Atsma DE, Hill JM, Vanderheyden M, et al. Role of imaging in cardiac stem cell therapy. J Am Coll Cardiol 2007;49(11):1137–48.

    Article  PubMed  Google Scholar 

  6. Zhang Y, Ruel M, Beanlands RS, deKemp RA, Suuronen EJ, DaSilva JN. Tracking stem cell therapy in the myocardium: applications of positron emission tomography. Curr Pharm Des 2008;14(36):3835–53.

    Article  PubMed  CAS  Google Scholar 

  7. Min JJ, Gambhir SS. Molecular imaging of PET reporter gene expression. Handb Exp Pharmacol 2008;(185 Pt 2): 277–303.

  8. Wang M, Caruano AL, Lewis MR, Meyer LA, VanderWaal RP, Anderson CJ. Subcellular localization of radiolabeled somatostatin analogues: implications for targeted radiotherapy of cancer. Cancer Res 2003;63(20):6864–9.

    PubMed  CAS  Google Scholar 

  9. Simões MV, Miyagawa M, Reder S, Städele C, Haubner R, Linke W, et al. Myocardial kinetics of reporter probe 124I-FIAU in isolated perfused rat hearts after in vivo adenoviral transfer of herpes simplex virus type 1 thymidine kinase reporter gene. J Nucl Med 2005;46(1):98–105.

    PubMed  Google Scholar 

  10. Shin JH, Chung JK, Kang JH, Lee YJ, Kim KI, Kim CW, et al. Feasibility of sodium/iodide symporter gene as a new imaging reporter gene: comparison with HSV1-tk. Eur J Nucl Med Mol Imaging 2004;31(3):425–32.

    Article  PubMed  CAS  Google Scholar 

  11. Frangioni JV, Hajjar RJ. In vivo tracking of stem cells for clinical trials in cardiovascular disease. Circulation 2004;110(21):3378–83.

    Article  PubMed  Google Scholar 

  12. Pearl J, Wu JC. Seeing is believing: tracking cells to determine the effects of cell transplantation. Semin Thorac Cardiovasc Surg 2008;20(2):102–9.

    Article  PubMed  Google Scholar 

  13. Villa C, Erratico S, Razini P, Fiori F, Rustichelli F, Torrente Y, et al. Stem cell tracking by nanotechnologies. Int J Mol Sci 2010;11(3):1070–81.

    Article  PubMed  CAS  Google Scholar 

  14. Walczak P, Bulte JW. The role of noninvasive cellular imaging in developing cell-based therapies for neurodegenerative disorders. Neurodegener Dis 2007;4(4):306–13.

    Article  PubMed  Google Scholar 

  15. Cahill KS, Germain S, Byrne BJ, Walter GA. Non-invasive analysis of myoblast transplants in rodent cardiac muscle. Int J Cardiovasc Imaging 2004;20(6):593–8.

    Article  PubMed  Google Scholar 

  16. Ebert SN, Taylor DG, Nguyen HL, Kodack DP, Beyers RJ, Xu Y, et al. Noninvasive tracking of cardiac embryonic stem cells in vivo using magnetic resonance imaging techniques. Stem Cells 2007;25:2936–44.

    Article  PubMed  Google Scholar 

  17. Hung TC, Suzuki Y, Urashima T, Caffarelli A, Hoyt G, Sheikh AY, et al. Multimodality evaluation of the viability of stem cells delivered into different zones of myocardial infarction. Circ Cardiovasc Imaging 2008;1(1):6–13.

    Article  PubMed  Google Scholar 

  18. Qiao H, Zhang H, Zheng Y, Ponde DE, Shen D, Gao F, et al. Embryonic stem cell grafting in normal and infarcted myocardium: serial assessment with MR imaging and PET dual detection. Radiology 2009;250(3):821–9.

    Article  PubMed  Google Scholar 

  19. Zhu WZ, Li X, Qi JP, Tang ZP, Wang W, Wei L, et al. Experimental study of cell migration and functional differentiation of transplanted neural stem cells co-labeled with superparamagnetic iron oxide and BrdU in an ischemic rat model. Biomed Environ Sci 2008;21(5):420–4.

    Article  PubMed  Google Scholar 

  20. Syková E, Jendelová P. Magnetic resonance tracking of transplanted stem cells in rat brain and spinal cord. Neurodegener Dis 2006;3(1–2):62–7.

    PubMed  Google Scholar 

  21. Hoehn M, Küstermann E, Blunk J, Wiedermann D, Trapp T, Wecker S, et al. Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci USA 2002;99(25):16267–72.

    Article  PubMed  CAS  Google Scholar 

  22. Daadi MM, Li Z, Arac A, Grueter BA, Sofilos M, Malenka RC, et al. Molecular and magnetic resonance imaging of human embryonic stem cell-derived neural stem cell grafts in ischemic rat brain. Mol Ther 2009;17(7):1282–91.

    Article  PubMed  CAS  Google Scholar 

  23. Mani V, Adler E, Briley-Saebo KC, Bystrup A, Fuster V, Keller G, et al. Serial in vivo positive contrast MRI of iron oxide-labeled embryonic stem cell-derived cardiac precursor cells in a mouse model of myocardial infarction. Magn Reson Med 2008;60(1):73–81.

    Article  PubMed  Google Scholar 

  24. Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DR, et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 2000;18(4):410–4.

    Article  PubMed  CAS  Google Scholar 

  25. Bulte JWM, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 2001;19(12):1141–7.

    Article  PubMed  CAS  Google Scholar 

  26. Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, Bruchez MP, et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 1996;382(6592):609–11.

    Article  PubMed  CAS  Google Scholar 

  27. Li SC, Tachiki LM, Luo J, Dethlefs BA, Chen Z, Loudon WG. A biological global positioning system: considerations for tracking stem cell behaviors in the whole body. Stem Cell Rev 2010;6(2):317–33.

    Article  PubMed  Google Scholar 

  28. Sutton EJ, Henning TD, Pichler BJ, Bremer C, Daldrup-Link HE. Cell tracking with optical imaging. Eur Radiol 2008;18(10):2021–32.

    Article  PubMed  Google Scholar 

  29. Sosnovik D, Weissleder R. Magnetic resonance and fluorescence based molecular imaging technologies. Prog Drug Res 2005;62:83–115.

    Article  PubMed  Google Scholar 

  30. Chen HF, Titushkin I, Stroscio M, Cho M. Altered membrane dynamics of quantum dot-conjugated integrins during osteogenic differentiation of human bone marrow derived progenitor cells. Biophys J 2007;92(4):1399–408.

    Article  PubMed  CAS  Google Scholar 

  31. Ferreira L. Nanoparticles as tools to study and control stem cells. J Cell Biochem 2009;108(4):746–52.

    Article  PubMed  CAS  Google Scholar 

  32. He X, Wang K, Cheng Z. In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010;2(4):349–66.

    Article  PubMed  CAS  Google Scholar 

  33. Smith BR, Cheng Z, De A, Koh AL, Sinclair R, Gambhir SS. Real-time intravital imaging of RGD-quantum dot binding to luminal endothelium in mouse tumor neovasculature. Nano Lett 2008;8(9):2599–606.

    Article  PubMed  CAS  Google Scholar 

  34. Rosen AB, Kelly DJ, Schuldt AJ, Lu J, Potapova IA, Doronin SV, et al. Finding fluorescent needles in the cardiac haystack: tracking human mesenchymal stem cells labeled with quantum dots for quantitative in vivo three-dimensional fluorescence analysis. Stem Cells 2007;25(8):2128–38.

    Article  PubMed  CAS  Google Scholar 

  35. Shah B, Clark P, Stroscio M, Mao J. Labeling and imaging of human mesenchymal stem cells with quantum dot bioconjugates during proliferation and osteogenic differentiation in long term. Conf Proc IEEE Eng Med Biol Soc 2006;1:1470–3.

    Article  PubMed  CAS  Google Scholar 

  36. Ito T, Itakura S, Todorov I, Rawson J, Asari S, Shintaku J, et al. Mesenchymal stem cell and islet co-transplantation promotes graft revascularization and function. Transplantation 2010;89(12):1438–45.

    Article  PubMed  Google Scholar 

  37. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005;307(5709):538–44.

    Article  PubMed  CAS  Google Scholar 

  38. Walter GA, Santra S, Thattaliyath B, Grant SC. (Super)paramagnetic nanoparticles: applications in noninvasive MR imaging of stem cell transfer. In: Bulte JWM, Modo MMJ, editors. Nanoparticles in biomedical imaging. New York: Springer; 2008. p. 91–140.

  39. Wu JC, Cao F, Dutta S, Xie X, Kim E, Chungfat N, et al. Proteomic analysis of reporter genes for molecular imaging of transplanted embryonic stem cells. Proteomics 2006;6(23):6234–49.

    Article  PubMed  CAS  Google Scholar 

  40. Cao F, Lin S, Xie X, Ray P, Patel M, Zhang X, et al. In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 2006;113(7):1005–14.

    Article  PubMed  Google Scholar 

  41. Wu JC, Chen IY, Sundaresan G, Min JJ, De A, Qiao JH, et al. Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 2003;108(11):1302–5.

    Article  PubMed  Google Scholar 

  42. Bengel FM, Anton M, Richter T, Simoes MV, Haubner R, Henke J, et al. Noninvasive imaging of transgene expression by use of positron emission tomography in a pig model of myocardial gene transfer. Circulation 2003;108(17):2127–33.

    Article  PubMed  CAS  Google Scholar 

  43. Rodriguez-Porcel M, Brinton TJ, Chen IY, Gheysens O, Lyons J, Ikeno F, et al. Reporter gene imaging following percutaneous delivery in swine: moving toward clinical applications. J Am Coll Cardiol 2008;51(5):595–7.

    Article  PubMed  Google Scholar 

  44. Peñuelas I, Mazzolini G, Boán JF, Sangro B, Martí-Climent J, Ruiz M, et al. Positron emission tomography imaging of adenoviral-mediated transgene expression in liver cancer patients. Gastroenterology 2005;128(7):1787–95.

    Article  PubMed  Google Scholar 

  45. Jacobs A, Voges J, Reszka R, Lercher M, Gossmann A, Kracht L, et al. Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 2001;358(9283):727–9.

    Article  PubMed  CAS  Google Scholar 

  46. Koole R, Mulder WJ, van Schooneveld MM, Strijkers GJ, Meijerink A, Nicolay K. Magnetic quantum dots for multimodal imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2009;1(5):475–91.

    Article  PubMed  CAS  Google Scholar 

  47. Schipper ML, Cheng Z, Lee SW, Bentolila LA, Iyer G, Rao J, et al. MicroPET-based biodistribution of quantum dots in living mice. J Nucl Med 2007;48(9):1511–8.

    Article  PubMed  CAS  Google Scholar 

  48. Mimeault M, Batra SK. Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells 2006;24(11):2319–45.

    Article  PubMed  CAS  Google Scholar 

  49. Behfar A, Zingman LV, Hodgson DM, Rauzier JM, Kane GC, Terzic A, et al. Stem cell differentiation requires a paracrine pathway in the heart. FASEB J 2002;16(12):1558–66.

    Article  PubMed  Google Scholar 

  50. Kofidis T, Lebl DR, Martinez EC, Hoyt G, Tanaka M, Robbins RC. Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation 2005;112(9 Suppl):I173–7.

    PubMed  Google Scholar 

  51. Min JY, Yang Y, Converso KL, Liu L, Huang Q, Morgan JP, et al. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J Appl Physiol 2002;92(1):288–96.

    Article  PubMed  Google Scholar 

  52. Min JY, Yang Y, Sullivan MF, Ke Q, Converso KL, Chen Y, et al. Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells. J Thorac Cardiovasc Surg 2003;125(2):361–9.

    Article  PubMed  Google Scholar 

  53. Cao F, Wagner RA, Wilson KD, Xie X, Fu JD, Drukker M, et al. Transcriptional and functional profiling of human embryonic stem cell-derived cardiomyocytes. PloS One 2008;3(10):e3474.

    Article  PubMed  Google Scholar 

  54. Lee A, Wu J. Comparison of adult versus embryonic stem cell therapy for cardiovascular disease: insights from molecular imaging studies. Curr Cardiovasc Imaging Rep 2009;2(1):50–8.

    Article  Google Scholar 

  55. Reinlib L, Field L. Cell transplantation as future therapy for cardiovascular disease? A workshop of the National Heart, Lung, and Blood Institute. Circulation 2000;101(18):E182–7.

    PubMed  CAS  Google Scholar 

  56. Orlic D, Hill JM, Arai AE. Stem cells for myocardial regeneration. Circ Res 2002;91(12):1092–102.

    Article  PubMed  CAS  Google Scholar 

  57. Zhang H, Zheng X, Yang X, Fang S, Shen G, Zhao C, et al. 11C-NMSP/18F-FDG microPET to monitor neural stem cell transplantation in a rat model of traumatic brain injury. Eur J Nucl Med Mol Imaging 2008;35(9):1699–708.

    Article  PubMed  Google Scholar 

  58. Bliss TM, Andres RH, Steinberg GK. Optimizing the success of cell transplantation therapy for stroke. Neurobiol Dis 2010;37(2):275–83.

    Article  PubMed  Google Scholar 

  59. Bliss T, Guzman R, Daadi M, Steinberg GK. Cell transplantation therapy for stroke. Stroke 2007;38(2):817–26.

    Article  PubMed  Google Scholar 

  60. Daadi MM, Maag AL, Steinberg GK. Adherent self-renewable human embryonic stem cell-derived neural stem cell line: functional engraftment in experimental stroke model. PloS One 2008;3(2):e1644.

    Article  PubMed  Google Scholar 

  61. Reubinoff BE, Itsykson P, Turetsky T, Pera MF, Reinhartz E, Itzik A, et al. Neural progenitors from human embryonic stem cells. Nat Biotechnol 2001;19(12):1134–40.

    Article  PubMed  CAS  Google Scholar 

  62. Koch P, Opitz T, Steinbeck JA, Ladewig J, Brüstle O. A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc Natl Acad Sci USA 2009;106(9):3225–30.

    Article  PubMed  CAS  Google Scholar 

  63. Hicks A, Jolkkonen J. Challenges and possibilities of intravascular cell therapy in stroke. Acta Neurobiol Exp (Wars) 2009;69(1):1–11.

    Google Scholar 

  64. Theus MH, Wei L, Cui L, Francis K, Hu X, Keogh C, et al. In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain. Exp Neurol 2008;210(2):656–70.

    Article  PubMed  CAS  Google Scholar 

  65. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 2000;18(4):399–404.

    Article  PubMed  CAS  Google Scholar 

  66. Erdo F, Bührle C, Blunk J, Hoehn M, Xia Y, Fleischmann B, et al. Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J Cereb Blood Flow Metab 2003;23(7):780–5.

    Article  PubMed  Google Scholar 

  67. Sugaya K. Possible use of autologous stem cell therapies for Alzheimer’s disease. Curr Alzheimer Res 2005;2(3):367–76.

    Article  PubMed  CAS  Google Scholar 

  68. Lindvall O, Kokaia Z, Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med 2004;10 Suppl:S42–50.

    Google Scholar 

  69. Bjorklund LM, Sánchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA 2002;99(4):2344–9.

    Article  PubMed  CAS  Google Scholar 

  70. Bradbury MS, Panagiotakos G, Chan BK, Tomishima M, Zanzonico P, Vider J, et al. Optical bioluminescence imaging of human ES cell progeny in the rodent CNS. J Neurochem 2007;102(6):2029–39.

    Article  PubMed  CAS  Google Scholar 

  71. Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 2000;227(2):271–8.

    Article  PubMed  CAS  Google Scholar 

  72. Rosler ES, Fisk GJ, Ares X, Irving J, Miura T, Rao MS, et al. Long-term culture of human embryonic stem cells in feeder-free conditions. Dev Dyn 2004;229(2):259–74.

    Article  PubMed  CAS  Google Scholar 

  73. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 2008;26(4):443–52.

    Article  PubMed  CAS  Google Scholar 

  74. D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, 2Baetge EE. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 2005;23(12):1534–41.

    Article  PubMed  Google Scholar 

  75. D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 2006;24(11):1392–401.

    Article  PubMed  Google Scholar 

  76. Blyszczuk P, Czyz J, Kania G, Wagner M, Roll U, St-Onge L, et al. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc Natl Acad Sci USA 2003;100(3):998–1003.

    Article  PubMed  CAS  Google Scholar 

  77. Hori Y, Rulifson IC, Tsai BC, Heit JJ, Cahoy JD, Kim SK. Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc Natl Acad Sci USA 2002;99(25):16105–10.

    Article  PubMed  CAS  Google Scholar 

  78. Miyazaki S, Yamato E, Miyazaki J. Regulated expression of pdx-1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells. Diabetes 2004;53(4):1030–7.

    Article  PubMed  CAS  Google Scholar 

  79. Chan KM, Raikwar SP, Zavazava N. Strategies for differentiating embryonic stem cells (ESC) into insulin-producing cells and development of non-invasive imaging techniques using bioluminescence. Immunol Res 2007;39:261–70.

    Article  PubMed  CAS  Google Scholar 

  80. Nguyen PK, Nag D, Wu JC. Methods to assess stem cell lineage, fate and function. Adv Drug Deliv Rev 2010.

  81. Lee H, Park J, Forget BG, Gaines P. Induced pluripotent stem cells in regenerative medicine: an argument for continued research on human embryonic stem cells. Regen Med 2009;4(5):759–69.

    Article  PubMed  Google Scholar 

  82. Amabile G, Meissner A. Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol Med 2009;15(2):59–68.

    Article  PubMed  CAS  Google Scholar 

  83. Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA 2008;105(15):5856–61.

    Article  PubMed  CAS  Google Scholar 

  84. Narazaki G, Uosaki H, Teranishi M, Okita K, Kim B, Matsuoka S, et al. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 2008;118(5):498–506.

    Article  PubMed  Google Scholar 

  85. Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 2009;104(4):e30–41.

    Article  PubMed  CAS  Google Scholar 

  86. Chen L, Liu L. Current progress and prospects of induced pluripotent stem cells. Sci China C Life Sci 2009;52(7):622–36.

    Article  PubMed  Google Scholar 

  87. Furukawa T, Lohith TG, Takamatsu S, Mori T, Tanaka T, Fujibayashi Y. Potential of the FES-hERL PET reporter gene system—basic evaluation for gene therapy monitoring. Nucl Med Biol 2006;33(1):145–51.

    Article  PubMed  CAS  Google Scholar 

  88. Takamatsu S, Furukawa T, Mori T, Yonekura Y, Fujibayashi Y. Noninvasive imaging of transplanted living functional cells transfected with a reporter estrogen receptor gene. Nucl Med Biol 2005;32(8):821–9.

    Article  PubMed  CAS  Google Scholar 

  89. Pichler BJ, Judenhofer MS, Catana C, Walton JH, Kneilling M, Nutt RE, et al. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med 2006;47(4):639–47.

    PubMed  Google Scholar 

  90. He H, Mortellaro MA, Leiner MJ, Young ST, Fraatz RJ, Tusa JK. A fluorescent chemosensor for sodium based on photoinduced electron transfer. Anal Chem 2003;75(3):549–55.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly sponsored by grants from the National Science Foundation of China (NSFC) (No. 30672396) and the Ministry of Science and Technology of China (No.2006DFB32940, 2011CB504400).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei Tian or Hong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, H., Cheng, Z., Tian, M. et al. In vivo imaging of embryonic stem cell therapy. Eur J Nucl Med Mol Imaging 38, 774–784 (2011). https://doi.org/10.1007/s00259-010-1667-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-010-1667-y

Keywords

Navigation