Skip to main content

Advertisement

Log in

Inorganic nanomaterials for tumor angiogenesis imaging

  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Tumor angiogenesis plays an important role in cancer development and metastasis. Noninvasive detection of angiogenic activities is thus of great importance in cancer diagnosis as well as evaluation of cancer therapeutic responses. Various angiogenesis-related molecular targets have been identified and used in tumor vasculature targeting and imaging. Recently, inorganic nanomaterials with various unique intrinsic physical properties have attracted growing interest in biomedical imaging applications. This article will review current progresses in the applications of inorganic nanoprobes in molecular angiogenesis imaging.

Discussion

Several types of nanomaterials with various optical properties, including semiconductor quantum dots (QDs), single-walled carbon nanotubes (SWNTs), upconversion nanoparticles (UCNPs), and surface-enhanced Raman scattering (SERS) nanoparticles, have been used as novel optical probes to image angiogenic events. Besides optical imaging, magnetic resonance imaging (MRI) of angiogenesis using magnetic nanoparticles has also been intensively investigated. Moreover, nanomaterials provide unique platforms for the integration of various imaging modalities together with therapeutic functionalities for multi-modality imaging and therapy.

Conclusion

Although the application of inorganic nanomaterials in clinical imaging and diagnosis is still facing many challenges, the unique properties and functions of these novel nanoprobes make them very promising agents in angiogenesis imaging and could bring great opportunities to this fast-growing field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182–6.

    Article  PubMed  CAS  Google Scholar 

  2. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995;1:27–31.

    Article  PubMed  CAS  Google Scholar 

  3. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000;407:249–57.

    Article  PubMed  CAS  Google Scholar 

  4. Chiang AC, Massagué J. Molecular basis of metastasis. N Engl J Med 2008;359:2814–23.

    Article  PubMed  CAS  Google Scholar 

  5. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med 1991;324:1–8.

    Article  PubMed  CAS  Google Scholar 

  6. Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2002;2:38–47.

    Article  PubMed  CAS  Google Scholar 

  7. Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2002;2:795–803.

    Article  PubMed  CAS  Google Scholar 

  8. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9:669–76.

    Article  PubMed  CAS  Google Scholar 

  9. Werb Z. ECM and cell surface proteolysis: regulating cellular ecology. Cell 1997;91:439–42.

    Article  PubMed  CAS  Google Scholar 

  10. Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer 2002;2:91–100.

    Article  PubMed  Google Scholar 

  11. Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng 2007;9:257–88.

    Article  PubMed  CAS  Google Scholar 

  12. Wael M, Alyona S, Vladimir O, Yury PR, John FD, Michel P, et al. Emerging applications of fluorescent nanocrystals quantum dots for micrometastases detection. Proteomics 2010;10:700–16.

    Article  CAS  Google Scholar 

  13. Singhal S, Nie S, Wang MD. Nanotechnology applications in surgical oncology. Annu Rev Med 2010;61:359–73.

    Article  PubMed  CAS  Google Scholar 

  14. Cormode DP, Skajaa T, Fayad ZA, Mulder WJM. Nanotechnology in medical imaging: probe design and applications. Arterioscler Thromb Vasc Biol 2009;29:992–1000.

    Article  PubMed  CAS  Google Scholar 

  15. Gwyther SJ. New imaging techniques in cancer management. Ann Oncol 2005;16:ii63–70.

    Article  PubMed  Google Scholar 

  16. Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 2003;17:545–80.

    Article  PubMed  CAS  Google Scholar 

  17. Dadiani M, Furman-Haran E, Degani H. The application of NMR in tumor angiogenesis research. Prog Nucl Magn Reson Spectrosc 2006;49:27–44.

    Article  CAS  Google Scholar 

  18. McDonald DM, Choyke PL. Imaging of angiogenesis: from microscope to clinic. Nat Med 2003;9:713–25.

    Article  PubMed  CAS  Google Scholar 

  19. Dobrucki LW, Sinusas AJ. Imaging angiogenesis. Curr Opin Biotechnol 2007;18:90–6.

    Article  PubMed  CAS  Google Scholar 

  20. Prichard JW, Brass LM. New anatomical and functional imaging methods. Ann Neurol 1992;32:395–400.

    Article  PubMed  CAS  Google Scholar 

  21. Jain RK, Duda DG, Willett CG, Sahani DV, Zhu AX, Loeffler JS, et al. Biomarkers of response and resistance to antiangiogenic therapy. Nat Rev Clin Oncol 2009;6:327–38.

    Article  PubMed  CAS  Google Scholar 

  22. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992;69:11–25.

    Article  PubMed  CAS  Google Scholar 

  23. Silva R, D’Amico G, Hodivala-Dilke KM, Reynolds LE. Integrins: the keys to unlocking angiogenesis. Arterioscler Thromb Vasc Biol 2008;28:1703–13.

    Article  PubMed  CAS  Google Scholar 

  24. Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 1996;12:697–715.

    Article  PubMed  CAS  Google Scholar 

  25. Lim EH, Danthi N, Bednarski M, Li KC. A review: integrin alphavbeta3-targeted molecular imaging and therapy in angiogenesis. Nanomedicine 2005;1:110–4.

    PubMed  CAS  Google Scholar 

  26. Decristoforo C, Hernandez GI, Carlsen J, Rupprich M, Huisman M, Virgolini I, et al. 68Ga- and 111In-labelled DOTA-RGD peptides for imaging of alphavbeta3 integrin expression. Eur J Nucl Med Mol Imaging 2008;35:1507–15.

    Article  PubMed  Google Scholar 

  27. Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, et al. Noninvasive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med 2005;2:e70.

    Article  PubMed  CAS  Google Scholar 

  28. Zhang C, Jugold M, Woenne EC, Lammers T, Morgenstern B, Mueller MM, et al. Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer Res 2007;67:1555–62.

    Article  PubMed  CAS  Google Scholar 

  29. Liu Z, Cai WB, He LN, Nakayama N, Chen K, Sun XM, et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2007;2:47–52.

    Article  PubMed  CAS  Google Scholar 

  30. Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, et al. Peptide-labeled near-Infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 2006;6:669–76.

    Article  PubMed  CAS  Google Scholar 

  31. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 2004;25:581–611.

    Article  PubMed  CAS  Google Scholar 

  32. Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 2002;20:4368–80.

    Article  PubMed  CAS  Google Scholar 

  33. Millauer B, Wizigmann-Voos S, Schnürch H, Martinez R, Møller NPH, Risau W, et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 1993;72:835–46.

    Article  PubMed  CAS  Google Scholar 

  34. Ciardiello F, Caputo R, Damiano V, Caputo R, Troiani T, Vitagliano D, et al. Antitumor effects of ZD6474, a small molecule vascular endothelial growth factor receptor tyrosine kinase inhibitor, with additional activity against epidermal growth factor receptor tyrosine kinase. Clin Cancer Res 2003;9:1546–56.

    PubMed  CAS  Google Scholar 

  35. Ferrara N, Hillan KJ, Gerber H-P. Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004;3:391–400.

    Article  PubMed  CAS  Google Scholar 

  36. Prewett M, Huber J, Li Y, Santiago A, O’Connor W, King K, et al. Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res 1999;59:5209–18.

    PubMed  CAS  Google Scholar 

  37. Sun J, Wang DA, Jain RK, Carie A, Paquette S, Ennis E, et al. Inhibiting angiogenesis and tumorigenesis by a synthetic molecule that blocks binding of both VEGF and PDGF to their receptors. Oncogene 2005;24:4701–9.

    Article  PubMed  CAS  Google Scholar 

  38. Wedge SR, Ogilvie DJ, Dukes M, Kendrew J, Curwen JO, Hennequin LF, et al. ZD4190: an orally active inhibitor of vascular endothelial growth factor signaling with broad-spectrum antitumor efficacy. Cancer Res 2000;60:970–5.

    PubMed  CAS  Google Scholar 

  39. Cai W, Chen K, Mohamedali KA, Cao Q, Gambhir SS, Rosenblum MG, et al. PET of vascular endothelial growth factor receptor expression. J Nucl Med 2006;47:2048–56.

    PubMed  CAS  Google Scholar 

  40. Cai W, Chen X. Multimodality imaging of vascular endothelial growth factor and vascular endothelial growth factor receptor expression. Front Biosci 2007;12:4267–79.

    Article  PubMed  CAS  Google Scholar 

  41. Hsu AR, Cai W, Veeravagu A, Mohamedali KA, Chen K, Kim S, et al. Multimodality molecular imaging of glioblastoma growth inhibition with vasculature-targeting fusion toxin VEGF121/rGel. J Nucl Med 2007;48:445–54.

    PubMed  CAS  Google Scholar 

  42. Nagengast WB, de Vries EG, Hospers GA, Mulder NH, de Jong JR, Hollema H, et al. In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. J Nucl Med 2007;48:1313–9.

    Article  PubMed  CAS  Google Scholar 

  43. Willmann JK, Paulmurugan R, Chen K, Gheysens O, Rodriguez-Porcel M, Lutz AM, et al. US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice. Radiology 2008;246:508–18.

    Article  PubMed  Google Scholar 

  44. Stetler-Stevenson WG. Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest 1999;103:1237–41.

    Article  PubMed  CAS  Google Scholar 

  45. Bremer C, Bredow S, Mahmood U, Weissleder R, Tung CH. Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model. Radiology 2001;221:523–9.

    Article  PubMed  CAS  Google Scholar 

  46. Furumoto S, Takashima K, Kubota K, Ido T, Iwata R, Fukuda H. Tumor detection using 18F-labeled matrix metalloproteinase-2 inhibitor. Nucl Med Biol 2003;30:119–25.

    Article  PubMed  CAS  Google Scholar 

  47. Medina OP, Kairemo K, Valtanen H, Kangasniemi A, Kaukinen S, Ahonen I, et al. Radionuclide imaging of tumor xenografts in mice using a gelatinase-targeting peptide. Anticancer Res 2005;25:33–42.

    PubMed  CAS  Google Scholar 

  48. Zheng QH, Fei X, Liu X, Wang JQ, Stone KL, Martinez TD, et al. Comparative studies of potential cancer biomarkers carbon-11 labeled MMP inhibitors (S)-2-(4'-[11C]methoxybiphenyl-4-sulfonylamino)-3-methylbutyric acid and N-hydroxy-(R)-2-[[(4'-[11C]methoxyphenyl)sulfonyl]benzylamino]-3-methylbutanamide. Nucl Med Biol 2004;31:77–85.

    Article  PubMed  CAS  Google Scholar 

  49. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002;2:161–74.

    Article  PubMed  CAS  Google Scholar 

  50. Heissig B, Hattori K, Friedrich M, Rafii S, Werb Z. Angiogenesis: vascular remodeling of the extracellular matrix involves metalloproteinases. Curr Opin Hematol 2003;10:136–41.

    Article  PubMed  CAS  Google Scholar 

  51. Whitesides GM. The ‘right’ size in nanobiotechnology. Nat Biotechnol 2003;21:1161–5.

    Article  PubMed  CAS  Google Scholar 

  52. Lowe CR. Nanobiotechnology: the fabrication and applications of chemical and biological nanostructures. Curr Opin Struct Biol 2000;10:428–34.

    Article  PubMed  CAS  Google Scholar 

  53. Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol 2006;24:1211–7.

    Article  PubMed  CAS  Google Scholar 

  54. Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004;22:969–76.

    Article  PubMed  CAS  Google Scholar 

  55. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005;307:538–44.

    Article  PubMed  CAS  Google Scholar 

  56. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005;4:435–46.

    Article  PubMed  CAS  Google Scholar 

  57. Qian XM, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 2008;26:83–90.

    Article  PubMed  CAS  Google Scholar 

  58. Keren S, Zavaleta C, Cheng Z, de la Zerda A, Gheysens O, Gambhir SS. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc Natl Acad Sci U S A 2008;105:5844–9.

    Article  PubMed  Google Scholar 

  59. Yu M, Li F, Chen Z, Hu H, Zhan C, Yang H, et al. Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors. Anal Chem 2009;81:930–5.

    Article  PubMed  CAS  Google Scholar 

  60. Nyk M, Kumar R, Ohulchanskyy TY, Bergey EJ, Prasad PN. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett 2008;8:3834–8.

    Article  PubMed  CAS  Google Scholar 

  61. Xiong L, Chen Z, Tian Q, Cao T, Xu C, Li F. High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal Chem 2009;81:8687–94.

    Article  PubMed  CAS  Google Scholar 

  62. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005;26:3995–4021.

    Article  PubMed  CAS  Google Scholar 

  63. Seo WS, Lee JH, Sun X, Suzuki Y, Mann D, Liu Z, et al. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat Mater 2006;5:971–6.

    Article  PubMed  CAS  Google Scholar 

  64. Lee HY, Li Z, Chen K, Hsu AR, Xu C, Xie J, et al. PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles. J Nucl Med 2008;49:1371–9.

    Article  PubMed  CAS  Google Scholar 

  65. Welsher K, Liu Z, Sherlock SP, Robinson JT, Chen Z, Daranciang D, et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol 2009;4:773–80.

    Article  PubMed  CAS  Google Scholar 

  66. De la Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 2008;3:557–62.

    Article  PubMed  CAS  Google Scholar 

  67. Zavaleta C, de la Zerda A, Liu Z, Keren S, Cheng Z, Schipper M, et al. Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes. Nano Lett 2008;8:2800–5.

    Article  PubMed  CAS  Google Scholar 

  68. Welsher K, Liu Z, Daranciang D, Dai H. Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett 2008;8:586–90.

    Article  PubMed  CAS  Google Scholar 

  69. Liu Z, Li X, Tabakman SM, Jiang K, Fan S, Dai H. Multiplexed multicolor Raman imaging of live cells with isotopically modified single walled carbon nanotubes. J Am Chem Soc 2008;130:13540–1.

    Article  PubMed  CAS  Google Scholar 

  70. Smith BR, Cheng Z, De A, Koh AL, Sinclair R, Gambhir SS. Real-time intravital imaging of RGD-quantum dot binding to luminal endothelium in mouse tumor neovasculature. Nano Lett 2008;8:2599–606.

    Article  PubMed  CAS  Google Scholar 

  71. Mulder WJ, Castermans K, van Beijnum JR, Oude Egbrink MG, Chin PT, Fayad ZA, et al. Molecular imaging of tumor angiogenesis using alphavbeta3-integrin targeted multimodal quantum dots. Angiogenesis 2009;12:17–24.

    Article  PubMed  CAS  Google Scholar 

  72. Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol 2005;23:1418–23.

    Article  PubMed  CAS  Google Scholar 

  73. Hong S, Leroueil PR, Majoros IJ, Orr BG, Baker JR Jr, Banaszak Holl MM. The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol 2007;14:107–15.

    Article  PubMed  CAS  Google Scholar 

  74. Cai W, Chen X. Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 2008;49 Suppl 2:113S–28.

    Article  PubMed  CAS  Google Scholar 

  75. Zaidi H, Prasad R. Advances in multimodality molecular imaging. J Med Phys 2009;34:122–8.

    Article  PubMed  Google Scholar 

  76. Lucignani G. Nanoparticles for concurrent multimodality imaging and therapy: the dawn of new theragnostic synergies. Eur J Nucl Med Mol Imaging 2009;36:869–74.

    Article  PubMed  Google Scholar 

  77. Lanza GM, Yu X, Winter PM, Abendschein DR, Karukstis KK, Scott MJ, et al. Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis. Circulation 2002;106:2842–7.

    Article  PubMed  CAS  Google Scholar 

  78. Gindy ME, Prud’homme RK. Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy. Expert Opin Drug Deliv 2009;6:865–78.

    Article  PubMed  CAS  Google Scholar 

  79. Cai WB, Chen XY. Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging. Nature Protoc 2008;3:89–96.

    Article  CAS  Google Scholar 

  80. Chen K, Li Z, Wang H, Cai W, Chen X. Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. Eur J Nucl Med Mol Imaging 2008;35:2235–44.

    Article  PubMed  CAS  Google Scholar 

  81. Oostendorp M, Douma K, Hackeng TM, Dirksen A, Post MJ, van Zandvoort MA, et al. Quantitative molecular magnetic resonance imaging of tumor angiogenesis using cNGR-labeled paramagnetic quantum dots. Cancer Res 2008;68:7676–83.

    Article  PubMed  CAS  Google Scholar 

  82. Cai W, Chen K, Li ZB, Gambhir SS, Chen X. Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med 2007;48:1862–70.

    Article  PubMed  CAS  Google Scholar 

  83. Hauck TS, Anderson RE, Fischer HC, Newbigging S, Chan WCW. In vivo quantum-dot toxicity assessment. Small 2010;6:138–44.

    Article  PubMed  CAS  Google Scholar 

  84. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, et al. Renal clearance of quantum dots. Nat Biotechnol 2007;25:1165–70.

    Article  PubMed  CAS  Google Scholar 

  85. Xie R, Chen K, Chen X, Peng X. InAs/InP/ZnSe core/shell/shell quantum dots as near-infrared emitters: bright, narrow-band, non-cadmium containing, and biocompatible. Nano Res 2008;1:457–64.

    Article  PubMed  CAS  Google Scholar 

  86. Yang ST, Cao L, Luo PG, Lu F, Wang X, Wang H, et al. Carbon dots for optical imaging in vivo. J Am Chem Soc 2009;131:11308–9.

    Article  PubMed  CAS  Google Scholar 

  87. Kang ZH, Liu Y, Tsang CHA, Ma DDD, Fan X, Wong NB, et al. Water-soluble silicon quantum dots with wavelength-tunable photoluminescence. Adv Mater 2009;21:661–4.

    Article  CAS  Google Scholar 

  88. Li X, Wang X, Zhang L, Lee S, Dai H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008;319:1229–32.

    Article  PubMed  CAS  Google Scholar 

  89. Jalil RA, Zhang Y. Biocompatibility of silica coated NaYF(4) upconversion fluorescent nanocrystals. Biomaterials 2008;29:4122–8.

    Article  PubMed  CAS  Google Scholar 

  90. Sandrock T, Scheife H, Heumann E, Huber G. High-power continuous-wave upconversion fiber laser at room temperature. Opt Lett 1997;22:808–10.

    Article  PubMed  CAS  Google Scholar 

  91. Downing E, Hesselink L, Ralston J, Macfarlane R. A three-color, solid-state, three-dimensional display. Science 1996;273:1185–9.

    Article  CAS  Google Scholar 

  92. Kumar R, Nyk M, Ohulchanskyy TY, Flask CA, Prasad PN. Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals. Adv Funct Mater 2009;19:853–9.

    Article  CAS  Google Scholar 

  93. Wang L, Yan R, Huo Z, Wang L, Zeng J, Bao J, et al. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew Chem Int Ed Engl 2005;44:6054–7.

    Article  PubMed  CAS  Google Scholar 

  94. Yi G, Lu H, Zhao S, Ge Y, Yang W, Chen D, et al. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors. Nano Lett 2004;4:2191–6.

    Article  CAS  Google Scholar 

  95. Mai H, Zhang Y, Si R, Yan Z, Sun L, You L, et al. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J Am Chem Soc 2006;128:6426–36.

    Article  PubMed  CAS  Google Scholar 

  96. Waynant RW, Ilev I K, Gannot I. Mid-infrared laser applications in medicine and biology. Philos Trans R Soc Lond A 2001;359:635–44.

    Article  CAS  Google Scholar 

  97. Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998;281:2016–8.

    Article  PubMed  CAS  Google Scholar 

  98. Yi GS, Chow GM. Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence. Adv Funct Mater 2006;16:2324–9.

    Article  CAS  Google Scholar 

  99. Mai H, Zhang Y, Sun L, Yan C. Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals. J Phys Chem C 2007;111:13721–9.

    Article  CAS  Google Scholar 

  100. Nie SM, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997;275:1102–6.

    Article  PubMed  CAS  Google Scholar 

  101. Hanlon EB, Manoharan R, Koo TW, Shafer KE, Motz JT, Fitzmaurice M, et al. Prospects for in vivo Raman spectroscopy. Phys Med Biol 2000;45:R1–59.

    Article  PubMed  CAS  Google Scholar 

  102. Baena JR, Lendl B. Raman spectroscopy in chemical bioanalysis. Curr Opin Chem Biol 2004;8:534–9.

    Article  PubMed  CAS  Google Scholar 

  103. Xu MH, Wang LHV. Photoacoustic imaging in biomedicine. Rev Sci Instrum 2006;77:041101.

    Article  CAS  Google Scholar 

  104. Li PC, Wang CR, Shieh DB, Wei CW, Liao CK, Poe C, et al. In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods. Opt Express 2008;16:18605–15.

    Article  PubMed  CAS  Google Scholar 

  105. Mallidi S, Larson T, Tam J, Joshi PP, Karpiouk A, Sokolov K, et al. Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. Nano Lett 2009;9:2825–31.

    Article  PubMed  CAS  Google Scholar 

  106. Song KH, Kim C, Cobley CM, Xia Y, Wang LV. Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model. Nano Lett 2009;9:183–8.

    Article  PubMed  CAS  Google Scholar 

  107. So MK, Xu C, Loening AM, Gambhir SS, Rao J. Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 2006;24:339–43.

    Article  PubMed  CAS  Google Scholar 

  108. Xia Z, Rao J. Biosensing and imaging based on bioluminescence resonance energy transfer. Curr Opin Biotechnol 2009;20:37–44.

    Article  PubMed  CAS  Google Scholar 

  109. Liu Z, Tabakman S, Welsher K, Dai H. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2009;2:85–120.

    Article  PubMed  CAS  Google Scholar 

  110. Liu Z, Tabakman SM, Chen Z, Dai H. Preparation of carbon nanotube bioconjugates for biomedical applications. Nat Protoc 2009;4:1372–82.

    Article  PubMed  CAS  Google Scholar 

  111. Liu Z, Sun X, Nakayama N, Dai H. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 2007;1:50–6.

    Article  PubMed  CAS  Google Scholar 

  112. Jin H, Heller DA, Strano MS. Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett 2008;8:1577–85.

    Article  PubMed  Google Scholar 

  113. Liu Z, Davis C, Cai W, He L, Chen X, Dai H. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci U S A 2008;105:1410–5.

    Article  PubMed  Google Scholar 

  114. Schipper ML, Nakayama-Ratchford N, Davis CR, Kam NWS, Chu P, Liu Z, et al. A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotechnol 2008;3:216–21.

    Article  PubMed  CAS  Google Scholar 

  115. Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, et al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 2008;68:6652–60.

    Article  PubMed  CAS  Google Scholar 

  116. Chen Z, Tabakman SM, Goodwin AP, Kattah MG, Daranciang D, Wang X, et al. Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat Biotechnol 2008;26:1285–92.

    Article  PubMed  CAS  Google Scholar 

  117. Tans SJ, Devoret MH, Dai HJ, Thess A, Smalley RE, Geerligs LJ, et al. Individual single-wall carbon nanotubes as quantum wires. Nature 1997;386:474–7.

    Article  CAS  Google Scholar 

  118. Kam NWS, O’Connell M, Wisdom JA, Dai H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A 2005;102:11600–5.

    Article  PubMed  CAS  Google Scholar 

  119. Chakravarty P, Marches R, Zimmerman NS, Swafford AD, Bajaj P, Musselman IH, et al. Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. Proc Natl Acad Sci U S A 2008;105:8697–702.

    Article  PubMed  Google Scholar 

  120. O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002;297:593–6.

    Article  PubMed  Google Scholar 

  121. Cherukuri P, Bachilo SM, Litovsky SH, Weisman RB. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J Am Chem Soc 2004;126:15638–9.

    Article  PubMed  CAS  Google Scholar 

  122. Rao AM, Richter E, Bandow S, Chase B, Eklund PC, Williams KA, et al. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 1997;275:187–91.

    Article  PubMed  CAS  Google Scholar 

  123. Heller DA, Baik S, Eurell TE, Strano MS. Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv Mater 2005;17:2793–9.

    Article  Google Scholar 

  124. Moon HK, Lee SH, Choi HC. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano 2009;3:3707–13.

    Article  PubMed  CAS  Google Scholar 

  125. Ghosh S, Dutta S, Gomes E, Carroll D, D’Agostino R, Olson J, et al. Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes. ACS Nano 2009;3:2667–73.

    Article  PubMed  CAS  Google Scholar 

  126. Lim Y, Kim S, Nakayama A, Stott N, Bawendi M, Frangioni J. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol Imaging 2003;2:50–64.

    Article  PubMed  CAS  Google Scholar 

  127. Kam NWS, Jessop TC, Wender PA, Dai HJ. Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells. J Am Chem Soc 2004;126:6850–1.

    Article  CAS  Google Scholar 

  128. Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D, et al. Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett 2006;6:1522–8.

    Article  PubMed  CAS  Google Scholar 

  129. Wu P, Chen X, Hu N, Tam UC, Blixt O, Zettl A, et al. Biocompatible carbon nanotubes generated by functionalization with glycodendrimers. Angew Chem Int Ed Engl 2008;47:5022–5.

    Article  PubMed  CAS  Google Scholar 

  130. Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 2004;77:126–34.

    Article  PubMed  CAS  Google Scholar 

  131. Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GA, Webb TR. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 2004;77:117–25.

    Article  PubMed  CAS  Google Scholar 

  132. Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 2005;289:L698–708.

    Article  PubMed  CAS  Google Scholar 

  133. Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 2005;207:221–31.

    PubMed  CAS  Google Scholar 

  134. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 2008;3:423–8.

    Article  PubMed  CAS  Google Scholar 

  135. Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC. Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 1998;4:623–6.

    Article  PubMed  CAS  Google Scholar 

  136. Winter PM, Caruthers SD, Kassner A, Harris TD, Chinen LK, Allen JS, et al. Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel alpha(nu)beta3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res 2003;63:5838–43.

    PubMed  CAS  Google Scholar 

  137. Schmieder AH, Winter PM, Caruthers SD, Harris TD, Williams TA, Allen JS, et al. Molecular MR imaging of melanoma angiogenesis with alphanubeta3-targeted paramagnetic nanoparticles. Magn Reson Med 2005;53:621–7.

    Article  PubMed  CAS  Google Scholar 

  138. Barrett T, Kobayashi H, Brechbiel M, Choyke PL. Macromolecular MRI contrast agents for imaging tumor angiogenesis. Eur J Radiol 2006;60:353–66.

    Article  PubMed  Google Scholar 

  139. Zhang C, Jugold M, Woenne EC, Lammers T, Morgenstern B, Mueller MM, et al. Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer Res 2007;67:1555–62.

    Article  PubMed  CAS  Google Scholar 

  140. Sun S, Murray CB, Weller D, Folks L, Moser A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000;287:1989–92.

    Article  PubMed  CAS  Google Scholar 

  141. Hutten A, Sudfeld D, Ennen I, Reiss G, Hachmann W, Heinzmann U, et al. New magnetic nanoparticles for biotechnology. J Biotechnol 2004;112:47–63.

    Article  PubMed  CAS  Google Scholar 

  142. Bardos DI. Mean magnetic moments in bcc Fe-Co alloys. J Appl Phys 1969;40:1371–2.

    Article  CAS  Google Scholar 

  143. Lee JH, Sherlock SP, Terashima M, Kosuge H, Suzuki Y, Goodwin A, et al. High-contrast in vivo visualization of microvessels using novel FeCo/GC magnetic nanocrystals. Magn Reson Med 2009;62:1497–509.

    Article  PubMed  Google Scholar 

  144. Selvan ST, Patra PK, Ang CY, Ying JY. Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew Chem Int Ed Engl 2007;46:2448–52.

    Article  PubMed  CAS  Google Scholar 

  145. Prinzen L, Miserus RJ, Dirksen A, Hackeng TM, Deckers N, Bitsch NJ, et al. Optical and magnetic resonance imaging of cell death and platelet activation using annexin a5-functionalized quantum dots. Nano Lett 2007;7:93–100.

    Article  PubMed  CAS  Google Scholar 

  146. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM. Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 2006;79:248–53.

    Article  PubMed  CAS  Google Scholar 

  147. Gwinn MR, Vallyathan V. Nanoparticles: health effects—pros and cons. Environ Health Perspect 2006;114:1818–25.

    PubMed  CAS  Google Scholar 

  148. Gupta AK, Naregalkar RR, Vaidya VD, Gupta M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine (Lond) 2007;2:23–39.

    Article  CAS  Google Scholar 

  149. He X, Nie H, Wang K, Tan W, Wu X, Zhang P. In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles. Anal Chem 2008;80:9597–603.

    Article  PubMed  CAS  Google Scholar 

  150. Chouly C, Pouliquen D, Lucet I, Jeune JJ, Jallet P. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul 1996;13:245–55.

    Article  PubMed  CAS  Google Scholar 

  151. Lacerda L, Soundararajan A, Singh R, Pastorin G, Al-Jamal KT, Turton J, et al. Dynamic imaging of functionalized multi-walled carbon nanotube systemic circulation and urinary excretion. Adv Mater 2008;20:225–30.

    Article  CAS  Google Scholar 

  152. Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci U S A 2006;103:3357–62.

    Article  PubMed  CAS  Google Scholar 

  153. Yang ST, Wang X, Jia G, Gu Y, Wang T, Nie H, et al. Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol Lett 2008;181:182–9.

    Article  PubMed  CAS  Google Scholar 

  154. Yang ST, Guo W, Lin Y, Deng XY, Wang HF, Sun HF, et al. Biodistribution of pristine single-walled carbon nanotubes in vivo. J Phys Chem C 2007;111:17761–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a research start-up fund of Soochow University.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Peng, R. Inorganic nanomaterials for tumor angiogenesis imaging. Eur J Nucl Med Mol Imaging 37 (Suppl 1), 147–163 (2010). https://doi.org/10.1007/s00259-010-1452-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-010-1452-y

Keywords

Navigation