Skip to main content

Advertisement

Log in

Individual cerebral metabolic deficits in Alzheimer’s disease and amnestic mild cognitive impairment: an FDG PET study

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the study was the identification of group and individual subject patterns of cerebral glucose metabolism (CMRGlu) in patients with Alzheimer’s disease (AD) and with amnestic mild cognitive impairment (aMCI).

Methods

[18F]fluorodeoxyglucose positron emission tomography (PET) studies and neuropsychological tests were performed in 16 aMCI patients (ten women, age 75 ± 8 years) and in 14 AD patients (ten women, age 75 ± 9 years). Comparisons between patient subgroups and with a control population were performed using Statistical Parametric Mapping.

Results

Clusters of low CMRGlu were observed bilaterally in the posterior cingulate cortex (PCC), in the precuneus, in the inferior parietal lobule and middle temporal gyrus of AD patients. In aMCI patients, reduced CMRGlu was found only in PCC. Areas of low CMRGlu in PCC were wider in AD compared to aMCI and extended to the precuneus, while low CMRGlu was found in the lateral parietal cortex in AD but not in aMCI patients. Individual subject pattern analysis revealed that 86% of AD patients had low CMRGlu in the PCC (including the precuneus in 71%), 71% in the temporal cortex, 64% in the parietal cortex and 35% in the frontal cortex. Among the aMCI patients, 56% had low CMRGlu in the PCC, 44% in the temporal cortex, 18% in the frontal cortex and none in the parietal cortex.

Conclusion

This study demonstrates that both AD and aMCI patients have highly heterogeneous metabolic impairment. This potential of individual metabolic PET imaging in patients with AD and aMCI may allow timely identification of brain damage on individual basis and possibly help planning tailored early interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mielke R, Kessler J, Szelies B, Herholz K, Wienhard K, Heiss WD. Normal and pathological aging: findings of positron-emission-tomography. J Neural Transm 1998;105:821–37.

    Article  PubMed  CAS  Google Scholar 

  2. Petrella JR, Coleman RE, Doraiswamy PM. Neuroimaging and early diagnosis of Alzheimer disease: a look to the future. Radiology 2003;226:315–36.

    Article  PubMed  Google Scholar 

  3. Coleman RE. Positron emission tomography diagnosis of Alzheimer’s disease. Neuroimaging Clin N Am 2005;15:837–46.

    Article  PubMed  Google Scholar 

  4. Kogure D, Matsuda H, Ohnishi T, et al. Longitudinal evaluation of early Alzheimer’s disease using brain perfusion SPECT. J Nucl Med 2000;41:1155–62.

    PubMed  CAS  Google Scholar 

  5. Johnson KA, Albert MS. Perfusion abnormalities in prodromal AD. Neurobiol Aging 2000;21:289–92.

    Article  PubMed  CAS  Google Scholar 

  6. Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 2007;6:734–46.

    Article  PubMed  Google Scholar 

  7. Farlow MR, Cummings JL. Effective pharmacologic management of Alzheimer’s disease. Am J Med 2007;120:388–97.

    Article  PubMed  CAS  Google Scholar 

  8. Braak H, Braak E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 1995;16:271–8.

    Article  PubMed  CAS  Google Scholar 

  9. Smith AD. Imaging the progression of Alzheimer pathology through the brain. Proc Natl Acad Sci USA 2002;99:4135–7.

    Article  PubMed  CAS  Google Scholar 

  10. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999;56:303–8.

    Article  PubMed  CAS  Google Scholar 

  11. Cummings JL, Doody R, Clark C. Disease-modifying therapies for Alzheimer disease: challenges to early intervention. Neurology 2007;69:1622–34.

    Article  PubMed  Google Scholar 

  12. Matsuda H. The role of neuroimaging in mild cognitive impairment. Neuropathology 2007;27:570–7.

    Article  PubMed  Google Scholar 

  13. Mosconi L, Tsui WH, De Santi S, Li J, Rusinek H, Convit A, et al. Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology 2005;64:1860–7.

    Article  PubMed  CAS  Google Scholar 

  14. Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Minoshima S, et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging 2003;30:1104–13.

    Article  PubMed  Google Scholar 

  15. Morris JC. Clinical dementia rating: a reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. Int Psychogeriatr 1997;9(Suppl 1):173–6.

    Article  PubMed  Google Scholar 

  16. Lezak MD. Neuropsychological assessment. 3rd ed. New York: Oxford University Press; 1995.

    Google Scholar 

  17. Moroney JT, Bagiella E, Desmond DW, Hachinski VC, Mölsä PK, Gustafson L, et al. Meta-analysis of the Hachinski Ischemic Score in pathological verified dementias. Neurol 1997;49:1096–105.

    CAS  Google Scholar 

  18. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed. Washington, DC: American Psychiatric Association; 1994.

    Google Scholar 

  19. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984;34:939–44.

    PubMed  CAS  Google Scholar 

  20. Moroney JT, Bagiella E, Desmond DW, Hachinski VC, Mölsä PK, Gustafson L, et al. Meta-analysis of the Hachinski Ischemic Score in pathological verified dementias. Neurology 1997;49:1096–105.

    PubMed  CAS  Google Scholar 

  21. Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain. New York: Thieme; 1988.

    Google Scholar 

  22. Signorini M, Paulesu E, Friston K, Perani D, Colleluori A, Lucignani G, et al. Rapid assessment of regional cerebral metabolic abnormalities in single subjects with quantitative and nonquantitative [18F]FDG PET: a clinical validation of Statistical Parametric Mapping. Neuroimage 1999;9:63–80.

    Article  PubMed  CAS  Google Scholar 

  23. Jagust W, Reed B, Mungas D, Ellis W, Decarli C. What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia? Neurology 2007;69:871–7.

    Article  PubMed  CAS  Google Scholar 

  24. Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 1997;42:85–94.

    Article  PubMed  CAS  Google Scholar 

  25. Small GW, Leiter F. Neuroimaging for diagnosis of dementia. J Clin Psychiatry 1998;59(Suppl 11):4–7.

    PubMed  Google Scholar 

  26. Ishii K. Clinical application of positron emission tomography for diagnosis of dementia. Ann Nucl Med 2002;16:515–25.

    Article  PubMed  Google Scholar 

  27. Diehl-Schmid J, Grimmer T, Drzezga A, Bornschein S, Riemenschneider M, Förstl H, et al. Decline of cerebral glucose metabolism in frontotemporal dementia: a longitudinal 18F-FDG-PET-study. Neurobiol Aging 2007;28:42–50.

    Article  PubMed  CAS  Google Scholar 

  28. Kordower JH, Chu Y, Stebbins GT, DeKosky ST, Cochran EJ, Bennett D, et al. Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol 2001;49:202–13.

    Article  PubMed  CAS  Google Scholar 

  29. Kumano H, Ida I, Oshima A, Takahashi K, Yuuki N, Amanuma M, et al. Brain metabolic changes associated with predispotion to onset of major depressive disorder and adjustment disorder in cancer patients—a preliminary PET study. J Psychiatr Res 2007;41:591–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. K.A. Frey from University of Michigan Ann Arbor for his helpful comments and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Lucignani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Sole, A., Clerici, F., Chiti, A. et al. Individual cerebral metabolic deficits in Alzheimer’s disease and amnestic mild cognitive impairment: an FDG PET study. Eur J Nucl Med Mol Imaging 35, 1357–1366 (2008). https://doi.org/10.1007/s00259-008-0773-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-0773-6

Keywords

Navigation