Skip to main content

Advertisement

Log in

Biodistribution and radiation dosimetry of the A1 adenosine receptor ligand 18F-CPFPX determined from human whole-body PET

European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

18F-8-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine (18F-CPFPX) is a potent radioligand to study human cerebral A1 adenosine receptors and their neuromodulatory and neuroprotective functions with positron emission tomography (PET). The purpose of this study was to determine the biodistribution and the radiation dose of 18F-CPFPX by whole-body scans in humans.

Methods

Six normal volunteers were examined with 12 whole-body PET scans from 1.5 min to 4.5 h after injection. Volumes of interest were defined over all visually identifiable organs, i.e. liver, gallbladder, kidneys, small intestines, heart, and brain to obtain the organs’ volumes and time-activity curves (TACs). TACs were fitted with exponential functions, extrapolated, multiplied with the physical decay and normalized to injected activities so that the residence times could be computed as area under the curve. Radiation doses were calculated using the OLINDA/EXM software for internal dose assessment in nuclear medicine.

Results

The liver uptake shows peak values (decay-corrected) of up to 35% of the injected radioactivity. About 30% is eliminated by bladder voiding. The highest radiation dose is received by the gallbladder (136.2 ± 66.1 μSv/MBq), followed by the liver (84.4 ± 10.6 μSv/MBq) and the urinary bladder (78.3 ± 7.1 μSv/MBq). The effective dose was 17.6 ± 0.5 μSv/MBq.

Conclusions

With 300 MBq of injected 18F-CPFPX a subject receives an effective dose (ICRP 60) of 5.3 mSv. Thus the effective dose of an 18F-CPFPX study is comparable to that of other 18F-labelled neuroreceptor ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Dunwiddie TV, Masino SA. The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci. 2001;24:31–55.

    Article  PubMed  CAS  Google Scholar 

  2. Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev. 2001;53:527–52.

    PubMed  CAS  Google Scholar 

  3. Fastbom J, Pazos A, Probst A, Palacios JM. Adenosine A1 receptors in the human brain: A quantitative autoradiographic study. Neuroscience. 1987;22:827–39.

    Article  PubMed  CAS  Google Scholar 

  4. Svenningsson P, Hall H, Sedvall G, Fredholm BB. Distribution of adenosine receptors in the postmortem human brain: An extended autoradiographic study. Synapse. 1997;27:322–35.

    Article  PubMed  CAS  Google Scholar 

  5. Bauer A, Holschbach MH, Meyer PT, et al. In vivo imaging of adenosine A1 receptors in the human brain with [18F]CPFPX and positron emission tomography. Neuroimage. 2003;19:1760–9.

    Article  PubMed  Google Scholar 

  6. Haas HL, Selbach O. Functions of neuronal adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol. 2000;362:375–81.

    Article  PubMed  CAS  Google Scholar 

  7. Bauer A, Langen KJ, Bidmon H, et al. 18F-CPFPX PET identifies changes in cerebral A1 adenosine receptor density caused by glioma invasion. J Nucl Med. 2005;46:450–4.

    PubMed  CAS  Google Scholar 

  8. Glass M, Faull RL, Bullock JY, et al. Loss of A1 adenosine receptors in human temporal lobe epilepsy. Brain Res. 1996;710:56–68.

    Article  PubMed  CAS  Google Scholar 

  9. Ulas J, Brunner LC, Nguyen L, Cotman CW. Reduced density of adenosine A1 receptors and preserved coupling of adenosine A1 receptors to G proteins in Alzheimer hippocampus: a quantitative autoradiographic study. Neuroscience. 1993;52:843–54.

    Article  PubMed  CAS  Google Scholar 

  10. Deckert J, Abel F, Kunig G, et al. Loss of human hippocampal adenosine A1 receptors in dementia: evidence for lack of specificity. Neurosci Lett. 1998;244:1–4.

    Article  PubMed  CAS  Google Scholar 

  11. Holschbach MH, Fein T, Krummeich C, et al. A1 adenosine receptor antagonists as ligands for positron emission tomography (PET) and single photon emission tomography (SPET). J Med Chem. 1998;41:555–63.

    Article  PubMed  CAS  Google Scholar 

  12. Holschbach MH, Olsson RA, Bier D, et al. Synthesis and evaluation of no-carrieradded 8-cyclopentyl-3-(3-[(18)F]fluoropropyl)-1-propylxanthine ([(18)F] CPFPX): a potent and selective A(1)-adenosine receptor antagonist for in vivo imaging. J Med Chem. 2002;45:5150–6.

    Article  PubMed  CAS  Google Scholar 

  13. Herzog H, Boy C, Holschbach M, et al. Cerebral Kinetics of the A1 Adenosine Receptor Antagonist [18F]CPFPX Measured in Non-Human Primates. J Cereb Blood Flow Metab. 2003;23(Suppl.1):690.

    Google Scholar 

  14. Meyer PT, Bier D, Holschbach MH, et al. Quantification of cerebral A1 adenosine receptors in humans using [18F]CPFPX and PET. J Cereb Blood Flow Metab. 2004;24:323–33.

    Article  PubMed  CAS  Google Scholar 

  15. Meyer PT, Elmenhorst D, Bier D, et al. Quantification of cerebral A1 adenosine receptors in humans using [18F]CPFPX and PET: an equilibrium approach. Neuroimage. 2005;24:1192–204.

    Article  PubMed  Google Scholar 

  16. Meyer PT, Elmenhorst D, Zilles K, Bauer A. Simplified quantification of cerebral A1 adenosine receptors using [18F]CPFPX and PET: analyses based on venous blood sampling. Synapse. 2005;55(4):212–23.

    Article  PubMed  CAS  Google Scholar 

  17. Elmenhorst D, Meyer PT, Winz OH, et al. Sleep deprivation increases A1 adenosine receptor binding in the human brain: a positron emission tomography study. J Neurosci. 2007;27:2410–5.

    Article  PubMed  CAS  Google Scholar 

  18. Boy C, Meyer PT, Kircheis G, et al. Cerebral A1 adenosine receptors (A1AR) in liver cirrhosis. Eur J Nucl Med Mol Imag. (paper accepted).

  19. Matusch A, Meyer PT, Bier D, et al. Metabolism of the A1 adenosine receptor PET ligand [18F]CPFPX by CYP1A2: implications for bolus/infusion PET studies. Nucl Med Biol. 2006;33:891–8.

    Article  PubMed  CAS  Google Scholar 

  20. Herzog H, Holschbach M, Boy C, et al. Biodistribution and radiation dose of the new A1 adenosine receptor antagonist [F-18] CPFPX in mice and baboon. J Nucl Med. 1998;39(5):188P.

    Google Scholar 

  21. Brix G, Zaers J, Adam L, et al. Performance evaluation of a whole-body PET Scanner using the NEMA protocol. J Nucl Med. 1997;38:1614–23.

    PubMed  CAS  Google Scholar 

  22. Lu JQ, Ichise M, Liow JS, Ghose S, Vines D, Innis RB. Biodistribution and radiation dosimetry of the serotonin transporter ligand 11C-DASB determined from human whole-body PET. J Nucl Med. 2004;45:1555–9.

    PubMed  CAS  Google Scholar 

  23. Slifstein M, Hwang DR, Martinez D, et al. Biodistribution and radiation dosimetry of the dopamine D2 ligand 11C-raclopride determined from human whole-body PET. J Nucl Med. 2006;47:313–9.

    PubMed  CAS  Google Scholar 

  24. Nye JA, Schuster DM, Yu W, Camp VM, Goodman MM, Votaw JR. Biodistribution and radiation dosimetry of the synthetic nonmetabolized amino acid analogue anti-18F-FACBC in humans. J Nucl Med. 2007;48:1017–20.

    Article  PubMed  CAS  Google Scholar 

  25. Hoffman EJ, Huang SC, Phelps ME, Kuhl DE. Quantitation in positron emission computed tomography: 4. Effect of accidental coincidences. J Comput Assist Tomogr. 1981;5:391–400.

    Article  PubMed  CAS  Google Scholar 

  26. International Commission on Radiological Protection. Limits for intakes of radionuclides by workers. ICRP Publication 30 Part 1 (Oxford, UK: Pergamon Press), 1979.

  27. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023–7.

    PubMed  Google Scholar 

  28. Herzog H, Zilken H, Niederbremer A, Friedrich W, Müller-Gärtner HW. Calculation of residence times and radiation doses using the standard PC-software Excel. Eur J Nucl Med. 1997;24:1514–21.

    Article  PubMed  CAS  Google Scholar 

  29. Cloutier RJ, Smith SA, Watson EE, et al. Dose to the fetus from radionuclides in the bladder. Health Physics. 1973;25:147–61.

    Article  PubMed  CAS  Google Scholar 

  30. International Commission on Radiological Protection. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. New York: Pergamon Press; 1991.

    Google Scholar 

  31. International Commission on Radiological Protection. Report of the task group on reference man. ICRP Publication 23. Oxford: Pergamon Press; 1975.

    Google Scholar 

  32. Food and Drug Administration. Title 21 CFR 361.1, Radioactive Drugs for Certain Research Uses. 4–1–01 ed. Washington, DC: National Archives and Records Administration; 2001:300–305.

  33. Siegel JA, Thomas SR, Stubbs JB, Stabin MG, Hays MT, Koral KF, et al. MIRD pamphlet no. 16: Techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med. 1999;40:37S–61S.

    PubMed  CAS  Google Scholar 

  34. Kessler RM, Mason NS, Jones C, Ansari MS, Manning RF, Price RR. [18F] N-ally-5-fluorproplepidepride (fallypride): radiation dosimetry, quantification of striatal and extrastriatal dopamine receptors in man. Neuroimage. 2000;6:S32.

    Google Scholar 

  35. Herzog H, Coenen HH, Kuwert T, Langen KJ, Feinendegen LE. Quantitation of the whole-body distribution of PET radiopharmaceuticals: Applied to 3-N-([18F]fluoroethyl)spiperone. Eur J Nucl Med. 1990;16:77–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Lutz Tellmann, Kornelia Frey and Elisabeth Theelen for excellent technical assistance. Johannes Ermert, Silke Grafmüller, Bettina Palm and Erika Wabbals are gratefully acknowledged for synthesis of 18F-CPFPX and Prof. Qaim for his help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Herzog.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herzog, H., Elmenhorst, D., Winz, O. et al. Biodistribution and radiation dosimetry of the A1 adenosine receptor ligand 18F-CPFPX determined from human whole-body PET. Eur J Nucl Med Mol Imaging 35, 1499–1506 (2008). https://doi.org/10.1007/s00259-008-0753-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-0753-x

Keywords

Navigation