Skip to main content

Advertisement

Log in

In vivo calcium imaging of the aging and diseased brain

  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Over the last decade, in vivo calcium imaging became a powerful tool for studying brain function. With the use of two-photon microscopy and modern labelling techniques, it allows functional studies of individual living cells, their processes and their interactions within neuronal networks. In vivo calcium imaging is even more important for studying the aged brain, which is hard to investigate in situ due to the fragility of neuronal tissue.

Methods

In this article, we give a brief overview of the techniques applicable to image aged rodent brain at cellular resolution.

Results

We use multicolor imaging to visualize specific cell types (neurons, astrocytes, microglia) as well as the autofluorescence of the “aging pigment” lipofuscin.

Conclusions

Further, we illustrate an approach for simultaneous imaging of cortical cells and senile plaques in mouse models of Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Khachaturian ZS. Towards theories of brain aging. In: Kay DW, Burrows GW, editors. Handbook of studies on psychiatry and old age. Amsterdam: Elsevier; 1984. pp 7–30.

    Google Scholar 

  2. Toescu EC, Verkhratsky A. The importance of being subtle: small changes in calcium homeostasis control cognitive decline in normal aging. Aging Cell. 2007;6:267–73.

    Article  PubMed  CAS  Google Scholar 

  3. Thibault O, Gant JC, Landfield PW. Expansion of the calcium hypothesis of brain aging and Alzheimer’s disease: minding the store. Aging Cell. 2007;6:307–17.

    Article  PubMed  CAS  Google Scholar 

  4. Murchison D, Griffith WH. Calcium buffering systems and calcium signaling in aged rat basal forebrain neurons. Aging Cell. 2007;6:297–305.

    Article  PubMed  CAS  Google Scholar 

  5. Kirischuk S, Pronchuk N, Verkhratsky A. Measurements of intracellular calcium in sensory neurons of adult and old rats. Neuroscience. 1992;50:947–51.

    Article  PubMed  CAS  Google Scholar 

  6. Kirischuk S, Verkhratsky A. Calcium homeostasis in aged neurons. Life Sci. 1996;59:451–9.

    Article  PubMed  CAS  Google Scholar 

  7. Murchison D, Griffith WH. Increased calcium buffering in basal forebrain neurons during aging. J Neurophysiol. 1998;80:350–64.

    PubMed  CAS  Google Scholar 

  8. Xiong J, Verkhratsky A, Toescu EC. Changes in mitochondrial status associated with altered Ca2+ homeostasis in aged cerebellar granule neurons in brain slices. J Neurosci. 2002;22:10761–71.

    PubMed  CAS  Google Scholar 

  9. Campbell LW, Hao SY, Thibault O, Blalock EM, Landfield PW. Aging changes in voltage-gated calcium currents in hippocampal CA1 neurons. J Neurosci. 1996;16:6286–95.

    PubMed  CAS  Google Scholar 

  10. Thibault O, Landfield PW. Increase in single L-type calcium channels in hippocampal neurons during aging. Science. 1996;272:1017–20.

    Article  PubMed  CAS  Google Scholar 

  11. Murchison D, Griffith WH. High-voltage-activated calcium currents in basal forebrain neurons during aging. J Neurophysiol. 1996;76:158–74.

    PubMed  CAS  Google Scholar 

  12. Foster TC, Norris CM. Age-associated changes in Ca2+-dependent processes: relation to hippocampal synaptic plasticity. Hippocampus. 1997;7:602–12.

    Article  PubMed  CAS  Google Scholar 

  13. LaFerla FM. Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci. 2002;3:862–72.

    Article  PubMed  CAS  Google Scholar 

  14. Smith IF, Hitt B, Green KN, Oddo S, LaFerla FM. Enhanced caffeine-induced Ca2+ release in the 3xTg-AD mouse model of Alzheimer’s disease. J Neurochem. 2005;94:1711–8.

    Article  PubMed  CAS  Google Scholar 

  15. Stutzmann GE, LaFerla FM, Parker I. Ca2+ signaling in mouse cortical neurons studied by two-photon imaging and photoreleased inositol triphosphate. J Neurosci. 2003;23:758–65.

    PubMed  CAS  Google Scholar 

  16. Stutzmann GE, Smith I, Caccamo A, Oddo S, LaFerla FM, Parker I. Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer’s disease mice. J Neurosci. 2006;26:5180–9.

    Article  PubMed  CAS  Google Scholar 

  17. Stutzmann GE, Smith I, Caccamo A, Oddo S, Parker I, Laferla FM. Enhanced ryanodine-mediated calcium release in mutant PS1-expressing Alzheimer’s mouse models. Ann N Y Acad Sci. 2007;1097:265–77.

    Article  PubMed  CAS  Google Scholar 

  18. Stutzmann GE, Caccamo A, LaFerla FM, Parker I. Dysregulated IP3 signaling in cortical neurons of knock-in mice expressing an Alzheimer’s-linked mutation in presenilin1 results in exaggerated Ca2+ signals and altered membrane excitability. J Neurosci. 2004;24:508–13.

    Article  PubMed  CAS  Google Scholar 

  19. Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science. 1990;248:73–6.

    Article  PubMed  CAS  Google Scholar 

  20. Svoboda K, Denk W, Kleinfeld D, Tank DW. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature. 1997;385:161–5.

    Article  PubMed  CAS  Google Scholar 

  21. Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods. 2005;2:932–40.

    Article  PubMed  CAS  Google Scholar 

  22. Wachowiak M, Cohen LB. Representation of odorants by receptor neuron input to the mouse olfactory bulb. Neuron. 2001;32:723–35.

    Article  PubMed  CAS  Google Scholar 

  23. Stosiek C, Garaschuk O, Holthoff K, Konnerth A. In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci U S A. 2003;100:7319–24.

    Article  PubMed  CAS  Google Scholar 

  24. Garaschuk O, Milos RI, Konnerth A. Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo. Nat Prot. 2006;1:380–6.

    Article  CAS  Google Scholar 

  25. Nagayama S, Zeng S, Xiong W, Fletcher ML, Masurkar AV, Davis DJ, et al. In vivo simultaneous tracing and Ca2+ imaging of local neuronal circuits. Neuron. 2007;53:789–803.

    Article  PubMed  CAS  Google Scholar 

  26. Heim N, Garaschuk O, Friedrich MW, Mank M, Milos RI, Kovalchuk Y, et al. Improved calcium imaging in transgenic mice expressing a troponin-C based biosensor. Nat Methods. 2007;4:127–9.

    Article  PubMed  CAS  Google Scholar 

  27. Garaschuk O, Griesbeck O, Konnerth A. Troponin C-based biosensors: a new family of genetically encoded indicators for in vivo calcium imaging in the nervous system. Cell Calcium. 2007;42:351–61.

    Article  PubMed  CAS  Google Scholar 

  28. Diez-Garcia J, Akemann W, Knopfel T. In vivo calcium imaging from genetically specified target cells in mouse cerebellum. Neuroimage. 2007;34:859–69.

    Article  PubMed  Google Scholar 

  29. Diez-Garcia J, Matsushita S, Mutoh H, Nakai J, Ohkura M, Yokoyama J, et al. Activation of cerebellar parallel fibers monitored in transgenic mice expressing a fluorescent Ca2+ indicator protein. Eur J Neurosci. 2005;22:627–35.

    Article  PubMed  Google Scholar 

  30. Hasan MT, Friedrich RW, Euler T, Larkum ME, Giese G, Both M, et al. Functional fluorescent Ca2+ indicator proteins in transgenic mice under TET control. PLoS Biol. 2004;2:763–75.

    Article  CAS  Google Scholar 

  31. Alzheimer A. Ueber eigenartige Krankheitsfaelle des spaeteren Alters. Zeitschrift fuer die gesamte Neurologie und Psychiatrie. 1911;4:356–86.

    Article  Google Scholar 

  32. Walsh DM, Selkoe DJ. Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron. 2004;44:181–93.

    Article  PubMed  CAS  Google Scholar 

  33. Sisodia SS, St George-Hyslop PH. Gamma-secretase, notch, Abeta and Alzheimer’s disease: where do the presenilins fit in. Nat Rev Neurosci. 2002;3:281–90.

    Article  PubMed  CAS  Google Scholar 

  34. Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol. 2007;8:101–12.

    Article  PubMed  CAS  Google Scholar 

  35. Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature. 1995;373:523–7.

    Article  PubMed  CAS  Google Scholar 

  36. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science. 1996;274:99–102.

    Article  PubMed  CAS  Google Scholar 

  37. Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S, et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci U S A. 1997;94:13287–92.

    Article  PubMed  CAS  Google Scholar 

  38. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron. 2003;39:409–21.

    Article  PubMed  CAS  Google Scholar 

  39. Radde R, Bolmont T, Kaeser SA, Coomaraswamy J, Lindau D, Stoltze L, et al. Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 2006;7:940–6.

    Article  PubMed  CAS  Google Scholar 

  40. Christie RH, Bacskai BJ, Zipfel WR, Williams RM, Kajdasz ST, Webb WW, et al. Growth arrest of individual senile plaques in a model of Alzheimer’s disease observed by in vivo multiphoton microscopy. J Neurosci. 2001;21:858–64.

    PubMed  CAS  Google Scholar 

  41. Bacskai BJ, Hickey GA, Skoch J, Kajdasz ST, Wang Y, Huang GF, et al. Four-dimensional multiphoton imaging of brain entry, amyloid binding, and clearance of an amyloid-beta ligand in transgenic mice. Proc Natl Acad Sci U S A. 2003;100:12462–7.

    Article  PubMed  CAS  Google Scholar 

  42. McLellan ME, Kajdasz ST, Hyman BT, Bacskai BJ. In vivo imaging of reactive oxygen species specifically associated with thioflavine S-positive amyloid plaques by multiphoton microscopy. J Neurosci. 2003;23:2212–7.

    PubMed  CAS  Google Scholar 

  43. Klunk WE, Bacskai BJ, Mathis CA, Kajdasz ST, McLellan ME, Frosch MP, et al. Imaging Abeta plaques in living transgenic mice with multiphoton microscopy and methoxy-X04, a systemically administered Congo red derivative. J Neuropathol Exp Neurol. 2002;61:797–805.

    PubMed  CAS  Google Scholar 

  44. Bacskai BJ, Kajdasz ST, Christie RH, Carter C, Games D, Seubert P, et al. Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nat Med. 2001;7:369–72.

    Article  PubMed  CAS  Google Scholar 

  45. Stalder M, Phinney A, Probst A, Sommer B, Staufenbiel M, Jucker M. Association of microglia with amyloid plaques in brains of APP23 transgenic mice. Am J Pathol. 1999;154:1673–84.

    PubMed  CAS  Google Scholar 

  46. Nimmerjahn A, Kirchhoff F, Kerr JN, Helmchen F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods. 2004;1:31–7.

    Article  PubMed  CAS  Google Scholar 

  47. Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol. 2000;20:4106–14.

    Article  PubMed  CAS  Google Scholar 

  48. Hirasawa T, Ohsawa K, Imai Y, Ondo Y, Akazawa C, Uchino S, et al. Visualization of microglia in living tissues using Iba1-EGFP transgenic mice. J Neurosci Res. 2005;81:357–62.

    Article  PubMed  CAS  Google Scholar 

  49. Aubin JE. Autofluorescence of viable cultured mammalian cells. J Histochem Cytochem. 1979;27:36–43.

    PubMed  CAS  Google Scholar 

  50. Porta EA. Pigments in aging: an overview. Ann N Y Acad Sci. 2002;959:57–65.

    Article  PubMed  CAS  Google Scholar 

  51. Terman A, Brunk UT. Lipofuscin. Int J Biochem Cell Biol. 2004;36:1400–4.

    Article  PubMed  CAS  Google Scholar 

  52. Brunk UT, Terman A. Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med. 2002;33:611–9.

    Article  PubMed  CAS  Google Scholar 

  53. Han M, Bindewald-Wittich A, Holz FG, Giese G, Niemz MH, Snyder S, et al. Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells. J Biomed Opt. 2006;11:0105011–3.

    Article  Google Scholar 

  54. Bindewald-Wittich A, Han M, Schmitz-Valckenberg S, Snyder SR, Giese G, Bille JF, et al. Two-photon-excited fluorescence imaging of human RPE cells with a femtosecond Ti:Sapphire laser. Invest Ophthalmol Vis Sci. 2006;47:4553–7.

    Article  PubMed  Google Scholar 

  55. Xu C. Two-photon cross sections of indicators. In: Yuste R, Konnerth A, editors. Imaging: a laboratory manual. Cold Spring Harbor: Cold Spring Harbor Press; 2000. pp 19.1–19.9.

    Google Scholar 

  56. Garaschuk O, Milos RI, Grienberger C, Marandi N, Adelsberger H, Konnerth A, et al. Optical monitoring of brain function in vivo: from neurons to networks. Pflugers Arch. 2006;453:385–96.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by grants of the Deutsche Forschungsgemeinschaft (SFB 391 and SFB 596) and the Bundesministerium für Bildung und Forschung (NGFN-2). We are thankful to M. Staufenbiel (Novartis Pharma, Basel, Switzerland) for AD mouse mutants, M. Kerschensteiner and T. Misgeld for CX3CR1-EGFP mice and A. Konnerth for support and helpful discussions. We thank Olympus Europa for providing two-photon-based Fluoview 1000MPE.

Conflict of interest statement

The authors declare that they have no relevant financial or any other interests in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Garaschuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichhoff, G., Busche, M.A. & Garaschuk, O. In vivo calcium imaging of the aging and diseased brain. Eur J Nucl Med Mol Imaging 35 (Suppl 1), 99–106 (2008). https://doi.org/10.1007/s00259-007-0709-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0709-6

Keywords

Navigation