Skip to main content
Log in

Evaluation of the pharmacokinetics of 68Ga-DOTATOC in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC therapy

European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the study was to evaluate the pharmacokinetics of 68Ga-DOTATOC in order to ascertain which parameters have the greatest impact on the global DOTATOC standardised uptake value (SUV), defined as the mean SUV of the last frame of the dynamic study 55–60 min p.i.

Methods

Twenty-two patients with 74 metastatic lesions were examined with dynamic 68Ga-DOTATOC PET studies. Standardised uptake values (SUVs) were calculated for all frames following the injection of the tracer. We defined global SUV as the mean SUV of the last frame (frame duration 5 min) of the dynamic study 55–60 min p.i. A two-tissue compartment model with a blood compartment was used for the evaluation of the rate constants k 1 (receptor binding), k 2 (displacement from the receptor), k 3 (cellular internalisation), k 4 (cellular externalisation) and fractional blood volume (Vb). Furthermore, a non-compartmental model was applied for calculation of the fractal dimension (FD) of the time-activity curves based on the box counting procedure.

Results

Qualitative analysis revealed increased uptake of 68Ga-DOTATOC in 21/22 patients and in 72/74 lesions. The SUV for 68Ga-DOTATOC was highly variable, with a range from 0.877 to 28.07 (mean 8.73). The highest uptake was measured in a patient with a NET of the pancreas and the lowest in a patient with a medullary thyroid carcinoma (MEN II). The quantitative evaluation based on the compartmental analysis revealed high receptor binding (k 1) and internalisation (k 3) for 68Ga-DOTATOC, and low cellular externalisation (k 4) as well as a relatively low fractional blood volume (Vb). The FD values varied from 1.10 to 1.45, with a mean of 1.33. No significant linear correlation was found for k 1 and k 3. A low, linear correlation was noted for k 1 and Vb (r=0.25,p=0.03), and there was a significant non-linear correlation between SUV and FD (r=0.74, p<0.001). Best subset analysis demonstrated that k 1 had the greatest impact on the global SUV, followed by Vb and k 3.

Conclusion

DOTATOC uptake in NETs is mainly dependent on k 1 (receptor binding) and Vb (fractional blood volume). Pharmacokinetic data analysis can help to separate blood background activity (Vb) from the receptor binding (k 1), which may help to optimise planning of 90Y-DOTATOC therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kaltsas G, Besser M, Grossman A. The diagnosis and medical management of advanced neuroendocrine tumors. Endocr Rev 2004;25:458–511

    Article  PubMed  CAS  Google Scholar 

  2. Reubi JC, Laissue J, Waser B, Horisberger U, Schaer JC. Expression of somatostatin receptors in normal, inflamed, and neoplastic human gastrointestinal tissues. Ann N Y Acad Sci 1994;733:122–37

    Article  PubMed  CAS  Google Scholar 

  3. Strauss LG, Conti PS. The applications of PET in clinical oncology. J Nucl Med 1991;32:623–48

    PubMed  CAS  Google Scholar 

  4. Dimitrakopoulou-Strauss A, Strauss LG, Schwarzbach M, Burger C, Heichel T, Willeke F, et al. Dynamic PET18F-FDG studies in patients with primary and recurrent soft-tissue sarcomas: impact on diagnosis and correlation with grading. J Nucl Med 2001;42:713–20

    PubMed  CAS  Google Scholar 

  5. Adams S, Baum R, Rink T, Schumm-Dräger PM, Usadel KH, Hör G. Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumours. Eur J Nucl Med 1998;25:79–83

    Article  PubMed  CAS  Google Scholar 

  6. Pacak K, Eisenhofer G, Goldstein DS. Functional imaging of endocrine tumors: role of positron emission tomography. Endocr Rev 2004;25:568–80

    Article  PubMed  Google Scholar 

  7. De Jong M, Breeman WA, Bernard BF, van Gameren A, de Bruin E, Bakker WH, et al. [DOTA0,TYR3] octreotide is dependent on the peptide amount. Eur J Nucl Med 1999;26:693–8

    Article  PubMed  Google Scholar 

  8. De Jong M, Bakker WH, Krenning EP, Breeman WA, van der Pluijm ME, Bernard BF, et al. Yttrium-90 and indium-111 labelling, receptor binding and biodistribution of [DOTA0,d-Phe1, Tyr3]octreotide, a promising somatostatin analogue for radionuclide therapy. Eur J Nucl Med 1997;24:368–71

    Article  PubMed  Google Scholar 

  9. Bohuslavizki KH, Brenner W, Braunsdorf WE, Behnke A, Tinnemeyer S, Hugo HH, et al. Somatostatin receptor scintigraphy in the differential diagnosis of meningioma. Nucl Med Commun 1996;17:302–10

    Article  PubMed  CAS  Google Scholar 

  10. Maecke H, Hofmann M, Haberkorn U. 68-Ga-labeled peptides in tumor imaging. J Nucl Med 2005;46:172S–8S

    PubMed  CAS  Google Scholar 

  11. Heppeler A, Froidevaux S, Eberle AN, Maecke HR. Receptor targeting for tumor localisation and therapy with radiopeptides. Curr Med Chem 2000;7:971–94

    PubMed  CAS  Google Scholar 

  12. Kontaxakis G, Strauss LG, Thireou T, Ledesma-Carbayo MJ, Santos A, Pavlopoulos SA et al. Iterative image reconstruction for clinical PET using ordered subsets, median root prior, and a web-based interface. Mol Imaging Biol 2002;4:219–31

    Article  PubMed  Google Scholar 

  13. Henze M, Dimitrakopoulou-Strauss A, Milker-Zabel S, Schuhmacher J, Strauss LG, Doll J, et al. Characterization of (68Ga)-DOTA-D-Phe1-Tyr3-octreotide (DOTATOC) kinetics in patients with meningiomas J Nucl Med 2005;46:763–9

    PubMed  CAS  Google Scholar 

  14. Burger C, Buck A. Requirements and implementations of a flexible kinetic modeling tool. J Nucl Med 1997;38:1818–23

    PubMed  CAS  Google Scholar 

  15. Ohtake T, Kosaka N, Watanabe T, Yokoyama I, Moritan T, Masuo M,, et al. Noninvasive method to obtain input function for measuring tissue glucose utilization of thoracic and abdominal organs. J Nucl Med 1991;32:1432–8

    PubMed  CAS  Google Scholar 

  16. Dimitrakopoulou–Strauss A, Strauss LG, Mikolajczyk K, Burger C, Lehnert T, Bernd L, et al. On the fractal nature of dynamic positron emission tomography (PET) studies. World J Nucl Med 2003;2:306–13

    Google Scholar 

  17. Hofmann M, Maecke H, Börner R, Weckesser E, Schoffski P, Oei L, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand68Ga-DOTATOC: preliminary data. Eur J Nucl Med 2001;28:1751–7

    Article  PubMed  CAS  Google Scholar 

  18. Baish JW, Jain RK. Fractals and cancer. Cancer Res 2001;61:8347–50

    Google Scholar 

  19. Majumdar S, Link TM, Millard J, Lin JC, Augat P, Newitt D, et al. In vivo assessment of trabecular bone structure using fractal analysis. Med Phys 2000;27:2594–9

    Article  PubMed  CAS  Google Scholar 

  20. Kuikka JT, Hartikainen P. Heterogeneity of cerebral blood flow: a fractal approach. Nuklearmedizin 2000;39:37–42

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the DFG grants HA2901/3-1 and 3-2 from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia Dimitrakopoulou-Strauss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koukouraki, S., Strauss, L.G., Georgoulias, V. et al. Evaluation of the pharmacokinetics of 68Ga-DOTATOC in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC therapy. Eur J Nucl Med Mol Imaging 33, 460–466 (2006). https://doi.org/10.1007/s00259-005-0006-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-005-0006-1

Keywords

Navigation