Skip to main content

Advertisement

Log in

Using the dGEMRIC technique to evaluate cartilage health in the presence of surgical hardware at 3T: comparison of inversion recovery and saturation recovery approaches

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To evaluate the effect of metal artifact reduction techniques on dGEMRIC T1 calculation with surgical hardware present.

Materials and methods

We examined the effect of stainless-steel and titanium hardware on dGEMRIC T1 maps. We tested two strategies to reduce metal artifact in dGEMRIC: (1) saturation recovery (SR) instead of inversion recovery (IR) and (2) applying the metal artifact reduction sequence (MARS), in a gadolinium-doped agarose gel phantom and in vivo with titanium hardware. T1 maps were obtained using custom curve-fitting software and phantom ROIs were defined to compare conditions (metal, MARS, IR, SR).

Results

A large area of artifact appeared in phantom IR images with metal when TI ≤ 700 ms. IR maps with metal had additional artifact both in vivo and in the phantom (shifted null points, increased mean T1 (+151 % IR ROIartifact) and decreased mean inversion efficiency (f; 0.45 ROIartifact, versus 2 for perfect inversion)) compared to the SR maps (ROIartifact: +13 % T1 SR, 0.95 versus 1 for perfect excitation), however, SR produced noisier T1 maps than IR (phantom SNR: 118 SR, 212 IR). MARS subtly reduced the extent of artifact in the phantom (IR and SR).

Conclusions

dGEMRIC measurement in the presence of surgical hardware at 3T is possible with appropriately applied strategies. Measurements may work best in the presence of titanium and are severely limited with stainless steel. For regions near hardware where IR produces large artifacts making dGEMRIC analysis impossible, SR-MARS may allow dGEMRIC measurements. The position and size of the IR artifact is variable, and must be assessed for each implant/imaging set-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bashir A, Gray ML, Hartke J, Burstein D. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med. 1999;41:857–65.

    Article  CAS  PubMed  Google Scholar 

  2. Kurkijärvi JE, Nissi MJ, Kiviranta I, Jurvelin JS, Nieminen MT. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 characteristics of human knee articular cartilage: topographical variation and relationships to mechanical properties. Magn Reson Med. 2004;52:41–6.

    Article  PubMed  Google Scholar 

  3. Burstein D, Velyvis J, Scott KT, Stock KW, Kim YJ, Jaramillo D, et al. Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med. 2001;45:36–41.

    Article  CAS  PubMed  Google Scholar 

  4. Gillis A, Bashir A, McKeon B, Scheller A, Gray ML, Burstein D. Magnetic resonance imaging of relative glycosaminoglycan distribution in patients with autologous chondrocyte transplants. Invest Radiol. 2001;36:743–8.

    Article  CAS  PubMed  Google Scholar 

  5. Kurkijärvi JE, Mattila L, Ojala RO, Vasara AI, Jurvelin JS, Kiviranta I, et al. Evaluation of cartilage repair in the distal femur after autologous chondrocyte transplantation using T2 relaxation time and dGEMRIC. Osteoarthr Cart. 2007;15:372–8.

    Article  Google Scholar 

  6. Tiderius CJ, Svensson J, Leander P, Ola T, Dahlberg L. dGEMRIC (delayed gadolinium-enhanced MRI of cartilage) indicates adaptive capacity of human knee cartilage. Magn Reson Med. 2004;51:286–90.

    Article  PubMed  Google Scholar 

  7. Roos EM, Dahlberg L. Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage: a four-month, randomized, controlled trial in patients at risk of osteoarthritis. Arthritis Rheum. 2005;52:3507–14.

    Article  CAS  PubMed  Google Scholar 

  8. Williams A, Sharma L, McKenzie CA, Prasad PV, Burstein D. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage in knee osteoarthritis: findings at different radiographic stages of disease and relationship to malalignment. Arthritis Rheum. 2005;52:3528–35.

    Article  CAS  PubMed  Google Scholar 

  9. Nojiri T, Watanabe N, Namura T, Narita W, Ikoma K, Suginoshita T, et al. Utility of delayed gadolinium-enhanced MRI (dGEMRIC) for qualitative evaluation of articular cartilage of patellofemoral joint. Knee Surg Sports Traumatol Arthrosc. 2006;14:718–23.

    Article  PubMed  Google Scholar 

  10. Tiderius CJ, Olsson LE, Nyquist F, Dahlberg L. Cartilage glycosaminoglycan loss in the acute phase after an anterior cruciate ligament injury: delayed gadolinium-enhanced magnetic resonance imaging of cartilage and synovial fluid analysis. Arthritis Rheum. 2005;52:120–7.

    Article  CAS  PubMed  Google Scholar 

  11. Owman H, Tiderius CJ, Neuman P, Nyquist F, Dahlberg LE. Association between findings on delayed gadolinium-enhanced magnetic resonance imaging of cartilage and future knee osteoarthritis. Arthritis Rheum. 2008;58:1727–30.

    Article  PubMed  Google Scholar 

  12. Tiderius CJ, Olsson LE, Leander P, Ekberg O, Dahlberg L. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in early knee osteoarthritis. Magn Reson Med. 2003;49:488–92.

    Article  PubMed  Google Scholar 

  13. Yamashita T, Watanabe A, Ochiai S, Matsuki K, Kamikawa K, Toyone T, et al. Time course evaluation of extracellular matrix after high tibial osteotomy using delayed gadolinium enhanced MR imaging of cartilage. Osteoarthritis Research Society International; 2008. p. Abstract 415.

  14. Young AA, Stanwell P, Williams A, Rohrsheim JA, Parker DA, Giuffre B, et al. Glycosaminoglycan content of knee cartilage following posterior cruciate ligament rupture demonstrated by delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC). J Bone Joint Surg Am. 2005;87-A:2763–8.

    Article  Google Scholar 

  15. Parker DA, Beatty KT, Giuffre B, Scholes CJ, Coolican MRJ. Articular cartilage changes in patients with osteoarthritis after osteotomy. Am J Sports Med. 2011;39:1039–45.

    Article  PubMed  Google Scholar 

  16. Rutgers M, Bartels LW, Tsuchida AI, Castelein RM, Dhert WJ, Vincken KL, et al. dGEMRIC as a tool for measuring changes in cartilage quality following high tibial osteotomy: a feasibility study. Osteoarthr Cart Elsevier Ltd. 2012;20:1134–41.

    Article  CAS  Google Scholar 

  17. Kolind SH, MacKay AL, Munk PL, Xiang QS. Quantitative evaluation of metal artifact reduction techniques. J Magn Reson Imaging. 2004;20:487–95.

    Article  PubMed  Google Scholar 

  18. Chang SD, Lee MJ, Munk PL, Janzen DL, MacKay A, Xiang QS. MRI of spinal hardware: comparison of conventional T1-weighted sequence with a new metal artifact reduction sequence. Skelet Radiol. 2001;30:213–8.

    Article  CAS  Google Scholar 

  19. Lee MJ, Janzen DL, Munk PL, MacKay A, Xiang QS, McGowen A. Quantitative assessment of an MR technique for reducing metal artifact: application to spin-echo imaging in a phantom. Skelet Radiol. 2001;30:398–401.

    Article  CAS  Google Scholar 

  20. Olsen RV, Munk PL, Lee MJ, Janzen DL, MacKay AL, Xiang Q-S, et al. Metal artifact reduction sequence: early clinical applications. Radiographics. 2000;20:699–712.

    Article  CAS  PubMed  Google Scholar 

  21. Norris D. Adiabatic radiofrequency pulse forms in biomedical nuclear magnetic resonance. Concepts Magn Reson. 2002;14:89–101.

    Article  Google Scholar 

  22. Kim YJ, Jaramillo D, Millis MB, Gray ML, Burstein D. Assessment of early osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J Bone Joint Surg Am. 2003;85-A:1987–92.

    PubMed  Google Scholar 

  23. Cho ZH, Kim DJ, Kim YK. Total inhomogeneity correction including chemical shifts and susceptibility by view angle tilting. Med Phys. 1988;15:7–11.

    Article  CAS  PubMed  Google Scholar 

  24. McKenzie CA, Williams A, Prasad PV, Burstein D. Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at 1.5 T and 3.0 T. J Magn Reson Imaging. 2006;24:928–33.

    Article  PubMed  Google Scholar 

  25. White LM, Buckwalter KA. Technical considerations: CT and MR imaging in the postoperative orthopedic patient. Semin Musculoskelet Radiol. 2002;6:5–17.

    Article  PubMed  Google Scholar 

  26. Eustace S, Goldberg R, Williamson D, Melhem ER, Oladipo O, Yucel EK, et al. MR imaging of soft tissues adjacent to orthopaedic hardware: techniques to minimize susceptibility artefact. Clin Radiol. 1997;52:589–94.

    Article  CAS  PubMed  Google Scholar 

  27. Lee M, Kim S, Lee S, Song H, Huh Y, Kim D, et al. Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics. 2007;27:791–804.

    Article  PubMed  Google Scholar 

  28. Harris CA, White LM. Metal artifact reduction in musculoskeletal magnetic resonance imaging. Orthop Clin North Am. 2006;37:349–59. vi.

    Article  PubMed  Google Scholar 

  29. Suh JS, Jeong EK, Shin KH, Cho JH, Na JB, Kim DH, et al. Minimizing artifacts caused by metallic implants at MR imaging: experimental and clinical studies. AJR Am J Roentgenol. 1998;171:1207–13.

    Article  CAS  PubMed  Google Scholar 

  30. Laakman RW, Kaufman B, Han JS, Nelson AD, Clampitt M, O’Block AM, et al. MR imaging in patients with metallic implants. Radiology. 1985;157:711–4.

    CAS  PubMed  Google Scholar 

  31. Koch KM, Busse RF, Lewein TA, Potter HG, Hinks RS, King KF. Multiple resonant frequency offset acquisitions for imaging of metallic implants. Toronto: The International Society for Magnetic Resonance in Medicine; 2008. p. 1250.

    Google Scholar 

  32. Lu W, Pauly KB, Gold GE, Pauly JM, Hargreaves BA. SEMAC: Slice encoding for metal artifact correction in MRI. Magn Reson Med. 2009;62:66–76.

    Google Scholar 

Download references

Acknowledgments

This study was supported by a Canadian Institutes for Health Research (CIHR) Operating grant, a Natural Sciences and Engineering Research Council (NSERC) Collaborative Health Research Projects grant, a Michael Smith Foundation Trainee Award (AGD), a Natural Sciences and Engineering Research Council (NSERC) Post Graduate Fellowship (AGD), and a Canadian Arthritis Network Scholarship (DRW).

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnes G. d’Entremont.

Rights and permissions

Reprints and permissions

About this article

Cite this article

d’Entremont, A.G., Kolind, S.H., Mädler, B. et al. Using the dGEMRIC technique to evaluate cartilage health in the presence of surgical hardware at 3T: comparison of inversion recovery and saturation recovery approaches. Skeletal Radiol 43, 331–344 (2014). https://doi.org/10.1007/s00256-013-1777-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-013-1777-2

Keywords

Navigation