Skip to main content

Advertisement

Log in

Benefits of molecular pathology in the diagnosis of musculoskeletal disease

Part II of a two-part review: bone tumors and metabolic disorders

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

The second part of this review, on the benefits of molecular pathology in the diagnosis disease, focuses on the genetics of bone tumors and metabolic disease. Unlike soft tissue tumors, the number of currently exploitable molecular abnormalities for diagnosing bone neoplasms is small, although the same gene rearrangements are found in primitive neuroectodermal tumor/Ewing sarcoma in both skeletal and extraskeletal sites. Compared with soft tissue tumors, genetic abnormalities, which are valuable to diagnosticians in skeletal disease, are often germline and post-zygotic aberrations rather than somatic translocations. In addition, the review highlights the range of disease entities classified as “osteoclast-rich lesions,” some of which harbor germline mutations. It also addresses the importance of phosphate metabolism in skeletal disorders including phosphaturic mesenchymal tumor, vitamin D-resistant rickets, and tumoral calcinosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig 6

Similar content being viewed by others

References

  1. Wunder JS, Eppert K, Burrow SR, Gokgoz N, Bell RS, Andrulis IL. Co-amplification and overexpression of CDK4, SAS and MDM2 occurs frequently in human parosteal osteosarcomas. Oncogene 1999;18:783–8.

    Article  CAS  PubMed  Google Scholar 

  2. Muller CR, Paulsen EB, Noordhuis P, Pedeutour F, Saeter G, Myklebost O. Potential for treatment of liposarcomas with the MDM2 antagonist Nutlin-3A. Int J Cancer. 2007;121:199–205.

    Article  CAS  PubMed  Google Scholar 

  3. Toledo F, Wahl GM. MDM2 and MDM4: p53 regulators as targets in anticancer therapy. Int J Biochem Cell Biol. 2007;39:1476–82.

    Article  CAS  PubMed  Google Scholar 

  4. Selvarajah S, Yoshimoto M, Ludkovski O, Park PC, Bayani J, Thorner P, et al. Genomic signatures of chromosomal instability and osteosarcoma progression detected by high resolution array CGH and interphase FISH. Cytogenet Genome Res. 2008;122:5–15.

    Article  CAS  PubMed  Google Scholar 

  5. Henderson SR, Guiliano D, Presneau N, McLean S, Frow R, Vujovic S, et al. A molecular map of mesenchymal tumors. Genome Biol. 2005;6:R76.

    Article  PubMed  Google Scholar 

  6. Man TK, Chintagumpala M, Visvanathan J, Shen J, Perlaky L, Hicks J, et al. Expression profiles of osteosarcoma that can predict response to chemotherapy. Cancer Res. 2005;65:8142–50.

    Article  CAS  PubMed  Google Scholar 

  7. Man TK, Lu XY, Jaeweon K, Perlaky L, Harris CP, Shah S, et al. Genome-wide array comparative genomic hybridization analysis reveals distinct amplifications in osteosarcoma. BMC Cancer 2004;4:45.

    Article  PubMed  Google Scholar 

  8. Hameetman L, Rozeman LB, Lombaerts M, Oosting J, Taminiau AH, Cleton-Jansen AM, et al. Peripheral chondrosarcoma progression is accompanied by decreased Indian Hedgehog signalling. J Pathol. 2006;209:501–11.

    Article  CAS  PubMed  Google Scholar 

  9. Bovee JV, Cleton-Jansen AM, Taminiau AH, Hogendoorn PC. Emerging pathways in the development of chondrosarcoma of bone and implications for targeted treatment. Lancet Oncol. 2005;6:599–607.

    Article  CAS  PubMed  Google Scholar 

  10. Bovee JV, Cleton-Jansen AM, Wuyts W, Caethoven G, Taminiau AH, Bakker E, et al. EXT-mutation analysis and loss of heterozygosity in sporadic and hereditary osteochondromas and secondary chondrosarcomas. Am J Hum Genet. 1999;65:689–98.

    Article  CAS  PubMed  Google Scholar 

  11. Pannier S, Legeai-Mallet L. Hereditary multiple exostoses and enchondromatosis. Best Pract Res Clin Rheumatol. 2008;22:45–54.

    Article  CAS  PubMed  Google Scholar 

  12. Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L. GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumors. Nature. 1989;340:692–6.

    Article  CAS  PubMed  Google Scholar 

  13. Delaney D, Diss TC, Presneau N, Hing S, Berisha F, Idowu BD, et al. GNAS1 mutations occur more commonly than previously thought in intramuscular myxoma. Mod Pathol. 2009;22:718–24.

    Article  CAS  PubMed  Google Scholar 

  14. Okamoto S, Hisaoka M, Ushijima M, Nakahara S, Toyoshima S, Hashimoto H. Activating Gs(alpha) mutation in intramuscular myxomas with and without fibrous dysplasia of bone. Virchows Arch. 2000;437:133–7.

    Article  CAS  PubMed  Google Scholar 

  15. Mazabraud A, Semat P, Roze R. A propos de l'association de fibromyxomes des tissus mous à la dysplasie fibreuse des os. Presse Med. 1967;75:2223–8.

    CAS  PubMed  Google Scholar 

  16. Shenker A, Weinstein LS, Moran A, Pescovitz OH, Charest NJ, Boney CM, et al. Severe endocrine and nonendocrine manifestations of the McCune-Albright syndrome associated with activating mutations of stimulatory G protein GS. J Pediatr. 1993;123:509–18.

    Article  CAS  PubMed  Google Scholar 

  17. Schwindinger WF, Francomano CA, Levine MA. Identification of a mutation in the gene encoding the alpha subunit of the stimulatory G protein of adenylyl cyclase in McCune-Albright syndrome. Proc Natl Acad Sci U S A. 1992;89:5152–6.

    Article  CAS  PubMed  Google Scholar 

  18. Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM. Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med. 1991;325:1688–95.

    CAS  PubMed  Google Scholar 

  19. Idowu BD, Al-Adnani M, O'Donnell P, Yu L, Odell E, Diss T, et al. A sensitive mutation-specific screening technique for GNAS1 mutations in cases of fibrous dysplasia: the first report of a codon 227 mutation in bone. Histopathology. 2007;50:691–704.

    Article  CAS  PubMed  Google Scholar 

  20. Fletcher CDM, Krishnan U, Mertens F. Pathology and genetics. Tumors of soft tissue and bone. In: Kleihues P, Sobin LH, editors. World Health Organization classification of tumors. Lyon: IARC Press; 2002.

    Google Scholar 

  21. Kahn LB. Adamantinoma, osteofibrous dysplasia and differentiated adamantinoma. Skeletal Radiol. 2003;32:245–58.

    PubMed  Google Scholar 

  22. Hazelbag HM, Fleuren GJ, vd Broek LJ, Taminiau AH, Hogendoorn PC. Adamantinoma of the long bones: keratin subclass immunoreactivity pattern with reference to its histogenesis. Am J Surg Pathol. 1993;17:1225–33.

    Article  CAS  PubMed  Google Scholar 

  23. Hazelbag HM, Taminiau AH, Fleuren GJ, Hogendoorn PC. Adamantinoma of the long bones. A clinicopathological study of thirty-two patients with emphasis on histological subtype, precursor lesion, and biological behavior. J Bone Joint Surg Am. 1994;76:1482–99.

    CAS  PubMed  Google Scholar 

  24. Kamineni S, Briggs TW, Saifuddin A, Sandison A. Osteofibrous dysplasia of the ulna. J Bone Joint Surg Br. 2001;83:1178–80.

    Article  CAS  PubMed  Google Scholar 

  25. Khanna M, Delaney D, Tirabosco R, Saifuddin A. Osteofibrous dysplasia, osteofibrous dysplasia-like adamantinoma and adamantinoma: correlation of radiological imaging features with surgical histology and assessment of the use of radiology in contributing to needle biopsy diagnosis. Skeletal Radiol. 2008;37:1077–84.

    Article  PubMed  Google Scholar 

  26. Lee RS, Weitzel S, Eastwood DM, Monsell F, Pringle J, Cannon SR, et al. Osteofibrous dysplasia of the tibia. Is there a need for a radical surgical approach? J Bone Joint Surg Br. 2006;88:658–64.

    Article  CAS  PubMed  Google Scholar 

  27. Pollandt K, Engels C, Kaiser E, Werner M, Delling G. Gsalpha gene mutations in monostotic fibrous dysplasia of bone and fibrous dysplasia-like low-grade central osteosarcoma. Virchows Arch. 2001;439:170–5.

    Article  CAS  PubMed  Google Scholar 

  28. Flanagan AM, Nui B, Tinkler SM, Horton MA, Williams DM, Chambers TJ. The multinucleate cells in giant cell granulomas of the jaw are osteoclasts. Cancer. 1988;62:1139–45.

    Article  CAS  PubMed  Google Scholar 

  29. Panoutsakopoulos G, Pandis N, Kyriazoglou I, Gustafson P, Mertens F, Mandahl N. Recurrent t(16;17)(q22;p13) in aneurysmal bone cysts. Genes Chromosomes Cancer. 1999;26:265–6.

    Article  CAS  PubMed  Google Scholar 

  30. Oliveira AM, Hsi BL, Weremowicz S, Rosenberg AE, Dal Cin P, Joseph N, et al. USP6 (Tre2) fusion oncogenes in aneurysmal bone cyst. Cancer Res. 2004;64:1920–3.

    Article  CAS  PubMed  Google Scholar 

  31. Oliveira AM, Perez-Atayde AR, Dal Cin P, Gebhardt MC, Chen CJ, Neff JR, et al. Aneurysmal bone cyst variant translocations upregulate USP6 transcription by promoter swapping with the ZNF9, COL1A1, TRAP150, and OMD genes. Oncogene 2005;24:3419–26.

    Article  CAS  PubMed  Google Scholar 

  32. Oliveira AM, Perez-Atayde AR, Inwards CY, Medeiros F, Derr V, Hsi BL, et al. USP6 and CDH11 oncogenes identify the neoplastic cell in primary aneurysmal bone cysts and are absent in so-called secondary aneurysmal bone cysts. Am J Pathol. 2004;165:1773–80.

    CAS  PubMed  Google Scholar 

  33. Bertoni F, Unni KK, Beabout JW, Sim FH. Malignant giant cell tumor of the tendon sheaths and joints (malignant pigmented villonodular synovitis). Am J Surg Pathol. 1997;21:153–63.

    Article  CAS  PubMed  Google Scholar 

  34. Cupp JS, Miller MA, Montgomery KD, Nielsen TO, O'Connell JX, Huntsman D, et al. Translocation and expression of CSF1 in pigmented villonodular synovitis, tenosynovial giant cell tumor, rheumatoid arthritis and other reactive synovitides. Am J Surg Pathol. 2007;31:970–6.

    Article  PubMed  Google Scholar 

  35. Ueki Y, Tiziani V, Santanna C, Fukai N, Maulik C, Garfinkle J, et al. Mutations in the gene encoding c-Abl-binding protein SH3BP2 cause cherubism. Nat Genet. 2001;28:125–6.

    Article  CAS  PubMed  Google Scholar 

  36. Jafarov T, Ferimazova N, Reichenberger E. Noonan-like syndrome mutations in PTPN11 in patients diagnosed with cherubism. Clin Genet. 2005;68:190–1.

    Article  CAS  PubMed  Google Scholar 

  37. Beneteau C, Cave H, Moncla A, Dorison N, Munnich A, Verloes A, et al. SOS1 and PTPN11 mutations in five cases of Noonan syndrome with multiple giant cell lesions. Eur J Hum Genet. 2009; doi:10.1038/ejhg.2009.4.

  38. Hanna N, Parfait B, Talaat IM, Vidaud M, Elsedfy HH. SOS1: a new player in the Noonan-like/multiple giant cell lesion syndrome. Clin Genet. 2009;75:568–71.

    Article  CAS  PubMed  Google Scholar 

  39. Van Capelle CI, Hogeman PH, van der Sijs-Bos CJ, Heggelman BG, Idowu B, Slootweg PJ, et al. Neurofibromatosis presenting with a cherubism phenotype. Eur J Pediatr. 2007;166:905–9.

    Article  PubMed  Google Scholar 

  40. Southgate J, Sarma U, Townend JV, Barron J, Flanagan AM. Study of the cell biology and biochemistry of cherubism. J Clin Pathol. 1998;51:831–7.

    Article  CAS  PubMed  Google Scholar 

  41. Idowu BD, Thomas G, Frow R, Diss TC, Flanagan AM. Mutations in SH3BP2, the cherubism gene, were not detected in central or peripheral giant cell tumors of the jaw. Br J Oral Maxillofac Surg. 2008;46:229–30.

    Article  PubMed  Google Scholar 

  42. De Lange J, van den Akker HP, van den Berg H. Central giant cell granuloma of the jaw: a review of the literature with emphasis on therapy options. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;104:603–15.

    Article  PubMed  Google Scholar 

  43. Aoki Y, Matsubara Y. Human development and the RAS/MAPK pathway. Seikagaku. 2007;79:34–8.

    CAS  PubMed  Google Scholar 

  44. Croonen EA, van der Burgt I, Kapusta L, Draaisma JM. Electrocardiography in Noonan syndrome PTPN11 gene mutation–phenotype characterization. Am J Med Genet A. 2008;146:350–3.

    PubMed  Google Scholar 

  45. Shaw AC, Kalidas K, Crosby AH, Jeffery S, Patton MA. The natural history of Noonan syndrome: a long-term follow-up study. Arch Dis Child. 2007;92:128–32.

    Article  CAS  PubMed  Google Scholar 

  46. Tartaglia M, Martinelli S, Stella L, Bocchinfuso G, Flex E, Cordeddu V, et al. Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease. Am J Hum Genet. 2006;78:279–90.

    Article  CAS  PubMed  Google Scholar 

  47. Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A. 2001;98:6500–5.

    Article  CAS  PubMed  Google Scholar 

  48. Fukumoto S, Yamashita T. FGF23 is a hormone-regulating phosphate metabolism—unique biological characteristics of FGF23. Bone 2007;40:1190–5.

    Article  CAS  PubMed  Google Scholar 

  49. Folpe AL, Fanburg-Smith JC, Billings SD, Bisceglia M, Bertoni F, Cho JY, et al. Most osteomalacia-associated mesenchymal tumors are a single histopathologic entity: an analysis of 32 cases and a comprehensive review of the literature. Am J Surg Pathol. 2004;28:1–30.

    Article  PubMed  Google Scholar 

  50. Jonsson KB, Zahradnik R, Larsson T, White KE, Sugimoto T, Imanishi Y, et al. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med. 2003;348:1656–63.

    Article  CAS  PubMed  Google Scholar 

  51. Consortium A. Autosomal dominant hypophosphatemic rickets is associated with mutations in FGF23. Nat Genet. 2000;26:345–8.

    Article  Google Scholar 

  52. White KE, Carn G, Lorenz-Depiereux B, Benet-Pages A, Strom TM, Econs MJ. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int. 2001;60:2079–86.

    Article  CAS  PubMed  Google Scholar 

  53. Mikati MA, Melhem RE, Najjar SS. The syndrome of hyperostosis and hyperphosphatemia. J Pediatr. 1981;99:900–4.

    Article  CAS  PubMed  Google Scholar 

  54. Ziran N, Hill S, Wright ME, Kovacs J, Robey PG, Wientroub S, et al. Ribbing disease: radiographic and biochemical characterization, lack of response to pamidronate. Skeletal Radiol. 2002;31:714–9.

    Article  PubMed  Google Scholar 

  55. Frishberg Y, Topaz O, Bergman R, Behar D, Fisher D, Gordon D, et al. Identification of a recurrent mutation in GALNT3 demonstrates that hyperostosis-hyperphosphatemia syndrome and familial tumoral calcinosis are allelic disorders. J Mol Med. 2005;83:33–8.

    Article  CAS  PubMed  Google Scholar 

  56. Arnold WH. Hereditary bone dysplasia with sarcomatous degeneration. Study of a family. Ann Intern Med. 1973;78:902–6.

    CAS  PubMed  Google Scholar 

  57. Douya H, Yokoyama R, Beppu Y, Hasegawa T. Malignant fibrous histiocytoma associated with diaphyseal medullary stenosis. Clin Orthop Relat Res. 2002;400:211–6.

    Article  PubMed  Google Scholar 

  58. Hardcastle P, Nade S, Arnold W. Hereditary bone dysplasia with malignant change. Report of three families. J Bone Joint Surg Am. 1986;68:1079–89.

    CAS  PubMed  Google Scholar 

  59. Kenan S, Abdelwahab IF, Hermann G, Klein MJ. Malignant fibrous histiocytoma associated with a bone infarct in a patient with hereditary bone dysplasia. Skeletal Radiol. 1998;27:463–7.

    Article  CAS  PubMed  Google Scholar 

  60. Norton KI, Wagreich JM, Granowetter L, Martignetti JA. Diaphyseal medullary stenosis (sclerosis) with bone malignancy (malignant fibrous histiocytoma): Hardcastle syndrome. Pediatr Radiol. 1996;26:675–7.

    Article  CAS  PubMed  Google Scholar 

  61. Martignetti JA, Desnick RJ, Aliprandis E, Norton KI, Hardcastle P, Nade S, et al. Diaphyseal medullary stenosis with malignant fibrous histiocytoma: a hereditary bone dysplasia/cancer syndrome maps to 9p21–22. Am J Hum Genet. 1999;64:801–7.

    Article  CAS  PubMed  Google Scholar 

  62. Martignetti JA, Gelb BD, Pierce H, Picci P, Desnick RJ. Malignant fibrous histiocytoma: inherited and sporadic forms have loss of heterozygosity at chromosome bands 9p21–22—evidence for a common genetic defect. Genes Chromosomes Cancer 2000;27:191–5.

    Article  CAS  PubMed  Google Scholar 

  63. Ginsberg JP, de Alava E, Ladanyi M, Wexler LH, Kovar H, Paulussen M, et al. EWS-FLI1 and EWS-ERG gene fusions are associated with similar clinical phenotypes in Ewing's sarcoma. J Clin Oncol. 1999;17:1809–14.

    CAS  PubMed  Google Scholar 

  64. Antonescu CR, Tschernyavsky SJ, Decuseara R, Leung DH, Woodruff JM, Brennan MF, et al. Prognostic impact of P53 status, TLS-CHOP fusion transcript structure, and histological grade in myxoid liposarcoma: a molecular and clinicopathologic study of 82 cases. Clin Cancer Res. 2001;7:3977–87.

    CAS  PubMed  Google Scholar 

  65. Hisaoka M, Ishida T, Kuo TT, Matsuyama A, Imamura T, Nishida K, et al. Clear cell sarcoma of soft tissue: a clinicopathologic, immunohistochemical, and molecular analysis of 33 cases. Am J Surg Pathol. 2008;32:452–60.

    Article  PubMed  Google Scholar 

  66. Sorensen PH, Lynch JC, Qualman SJ, Tirabosco R, Lim JF, Maurer HM, et al. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the Children's Oncology Group. J Clin Oncol. 2002;20:2672–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

UCL is a partner of the EuroBoNeT consortium, a European Commission granted Network of Excellence for studying the pathology and genetics of bone tumors.

The research was generously funded by Skeletal Cancer Action Trust (SCAT), UK. The work was also supported by the UCLH/UCL Comprehensive Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrienne M. Flanagan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flanagan, A.M., Delaney, D. & O’Donnell, P. Benefits of molecular pathology in the diagnosis of musculoskeletal disease. Skeletal Radiol 39, 213–224 (2010). https://doi.org/10.1007/s00256-009-0758-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-009-0758-y

Keywords

Navigation