Skip to main content
Log in

Salt and ice crystallisation in porous sandstones

  • Original Article
  • Published:
Environmental Geology

Abstract

Salt and ice crystallisation in the pore spaces causes major physical damage to natural building stones. The damaging effect of these processes can be traced back to physically induced stress inside of the rock while crystallizing. The increasing scientific research done during the past century has shown that there are numerous parameters that have an influence on the weathering resulting from these processes. However, the working mechanisms of the stress development within the rock and its material dependency are still subject to discussion. This article gives an overview of salt and ice weathering. Additionally, laboratory results of various sandstones examined are presented. Salt crystallisation tests and freeze/thaw tests were done to obtain information about how crystallisation weathering depends on material characteristics such as pore space, water transportation, and mechanical features. Simultaneous measuring of the length alternating during the salt and ice crystallisation has revealed detailed information on the development of crystal in the pore spaces as well as the development of stress. These findings can help to understand the damaging mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Arnold A, Zehnder K (1990) Salt weathering on monuments. In: Advanced workshop analytical methodologies for the investigation of damaged stones, 14–21 September 1990, Pavia (Italy)

  • Birch F (1960) The velocity of compressional waves in rocks up to 10 kilobars, Part I. J Geophys Res 65:1083–1102

    Google Scholar 

  • Birch F (1961) The velocity of compressional waves in rocks to 10 kilobars, Part II. J Geophys Res 66:2199–2224

    Article  Google Scholar 

  • Brakel J van, Modry S, Svata M (1981) Mercury porosimetry: state of the art. Powder Technol 29:1–12

    Article  Google Scholar 

  • Charola AE, Weber J (1992) The hydration/dehydration mechanisms of sodium sulphate. In: Delgado Rodrigues J (ed) Seventh international congress on the deterioration and conservation of stone. Lisbon, pp 581–590

  • Charola AE (2000) Salts in the deterioration of porous materials: an overview. J Am Inst Conserv 39:327–343

    Article  Google Scholar 

  • Chatterji S, Christensen P, Overgaard G (1979) Mechanisms of breakdown of natural stones caused by sodium salts. In: Badan B (ed) Third international congress on the deterioration and conservation of stone. Padova, pp 131–134

  • Correns CW, Steinborn W (1939) Über die Erklärung der sogenannten Kristallisationskraft. Zeitschrift für Kristallographie 101:117–133

    Google Scholar 

  • Correns CW (1949) Growth and dissolution of crystals under linear pressure. Discuss Faraday Soc 5:267–71

    Article  Google Scholar 

  • Darwin CR (1839) Journal of researches into the natural history and geology of the countries visited during the voyage of HMS Beagle round the world. D. Appleton, New York

    Google Scholar 

  • Doehne E (1994) In situ dynamics of sodium sulfate hydration and dehydration in stone pores: observations at high magnification using the environmental scanning electron microscope. In: Fassina V, Ott H, Zezza F (eds) The conservation of monuments in the Mediterrane Basin. Venice, pp 143–150

  • Doehne E (2002) Salt weathering: a selective review. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stones, weathering phenomena, conservation strategies and case studies. Geol Soc Spec Publ 205:43–56

  • Duttlinger W, Knöfel D (1993) Salzkristallisation und Salzschadensmechanismen. Jahresbericht Steinzerfall—Steinkonservierung 1991, Ernst & Sohn Verlag, pp 197–213

  • Everett DM (1961) The thermodynamics of frost damage to porous solids. Trans Faraday Soc 57:2205–2211

    Google Scholar 

  • Fitzner B (1969) Die Prüfung der Frostbeständigkeit von Naturbausteinen. Geologische Mitteilungen 10:205–296

    Google Scholar 

  • Fitzner B, Snethlage R (1982) Einfluß der Porenradienverteilung auf das Verwitterungsverhalten ausgewählter Sandsteine. Bautenschutz und Bausanierung 3–1982:97–103

    Google Scholar 

  • Hirschwald J (1908) Die Prüfung der natürlichen Bausteine auf ihre Verwitterungsbeständigkeit. Wilhelm Ernst & Sohn, Berlin

    Google Scholar 

  • Kirchner D, Worch A (1993) Physikalische Vorgänge bei der Salzkristallisation. Bautenschutz und Bausanierung 16:101–103

    Google Scholar 

  • Kiseleva OA, Kladko SN, Sobolev VD, Churaev NV (1975) Crystallisation and melting of aqueous solutions in capillaries as a model of a porous body. Colloid J USSR 37:1–37

    Google Scholar 

  • La Plaza S, Post B (1960) Thermal expansion of ice. Acta Cryst 13:503–505

    Article  Google Scholar 

  • McMahon DJ, Sandberg P, Folliard K, Mehta PK (1992) Deterioration mechanisms of sodium sulfate. In: Rodriques JD, Hendriques F, Jeremisas FT (eds.) Proceedings of 7th international congress of deterioration and conservation of stone, vol 2. Portugal, Lisbon, pp 705–714

  • Mortensen H (1933) Die Salzsprengung und ihre Bedeutung für die regionalklimatische Gliederung der Wüsten. Petermann’s Mitteilungen aus Justus Perthes geographischer Anstalt 79:130–135

    Google Scholar 

  • Nicholson DT, Nicholson FH (2000) Physical deterioration of sedimentary rocks subjected to experimental freezing and thawing. Earth Surf Process Landf 25:1295–1307

    Article  Google Scholar 

  • Powers TC (1945) A working hypothesis for further studies of frost resistance of concrete. J ACI Proc 41:245–272

    Google Scholar 

  • Powers TC (1949) The air requirement of frost resistant concrete. Proc Highway Res Board V29:184–211

    Google Scholar 

  • Powers TC (1955) Resistance of concrete tor frost at early ages. In: Proceedings of RILEM symposium on winter concreting, pp 1–47

  • Price C, Brimblecombe P (1994) Preventing salt damage in porous materials. In: Ashok R, Smith P (eds) Prepr. Contr. Ottawa Congr. Preventive conservation-practice, theory and research IIC, London, pp 90–93

  • Pühringer J (1983) Salt disintegration: salt migration and degradation by salt—a hypothesis. Swedish Council for Building Research D15, Stockholm

    Google Scholar 

  • Pühringer J, Engstrom L (1985) Unconventional methods for the prevention of salt damage. In: Furlan V (ed) Proceedings of 5th international congress on deterioration and conservation of stone 1:241–250

  • Putnis A, Mauthe G (2001) The effect of pore size on cementation in porous rocks. Geofluids 1:37–41

    Article  Google Scholar 

  • Rodriguez-Navarro C, Doehne E (1999) Salt weathering: influence of evaporation rate, supersaturation and crystallization pattern. Earth Surf Process Landf 24:191–209

    Article  Google Scholar 

  • Rodriguez-Navarro C, Doehne E, Sebastián E (2000) How does sodium sulfate crystallize? Implications for the decay and testing of building materials. Cement Concr Res 16(3):947–954

    Google Scholar 

  • Rossi-Manaresi R, Tucci A (1991) Pore structure and the disruptive or cementing effect of salt crystallization in various types of stone. Stud Conserv 36:53–58

    Article  Google Scholar 

  • Ruedrich J, Kirchner D, Seidel M, Siegesmund S (2005) Deterioration of natural building stones induced by salt and ice crystallisation in the pore space as well as hygric expansion processes. In: Siegesmund S, Auras M, Ruedrich J, Snethlage R (eds) Geowissenschaften und Denkmalpflege, Zeitschrift Deutsche Geologische Gesellschaft 156/1:59–73

  • Scherer GW (1999) Crystallization in pores. Cement Concr Res 29:1347–1358

    Article  Google Scholar 

  • Siegesmund S (1996) The significance of rock fabrics for the geological interpretation of geophysical anisotropies. Geotektonische Forschung 85:1–123

    Google Scholar 

  • Skinner BJ (1966) Thermal expansion. In: Clark SP (ed) Handbook of physical constants. Geol Soc Am 97:75–96

  • Snethlage R (1984) Steinkonservierung. Bayerisches Landesamt für Denkmalpflege. Arbeitshefte 22:203

    Google Scholar 

  • Snethlage R, Wendler E (1997) Moisture cycles and sandstone degradation. In: Baer NS, Snethlage R (eds) Saving our architectural heritage. The conservation of historic stone structures. Elsevier, Chichester, pp 7–24

    Google Scholar 

  • Sperling CHB, Cooke RU (1980) Salt weathering in arid environments. I. Theoretical considerations. Bedford Coll Pap Geogr 9:52

    Google Scholar 

  • Steiger M, Dannecker W (1998) Die Bedingungen für die Kristallisation verschiedener Salzhydrate am Beispiel Thenardit/Mirabilit. In: Jahresberichte Steinzerfall-Steinkonservierung, Band 6, 1994–1996. Frauenhofer IRB Verlag, Stuttgart, pp 123–133

  • Steiger M, Neumann HH, Grodten T, Wittenburg C, Dannecker W (1998) Salze in Natursteinmauerwerk: Probenahme, Messung und Interpretation. In: Snethlage R (ed) Natursteinkonservierung 2. Fraunhofer IRB Verlag, Stuttgart, pp 61–91

    Google Scholar 

  • Steiger M (2005) Crystal growth in porous materials. I: The crystallisation pressure of large crystals. J Cryst Growth 282:455–469

    Article  Google Scholar 

  • Stockhausen N (1981) Die Dilatation hochporöser Festkörper bei Wasseraufnahme und Eisbildung. Ph.D. TU München, pp 163

  • Sunagawa I (1981) Characteristics of crystal growth in nature as seen from the morphology of mineral crystals. Bull Mineral 104:81–87

    Google Scholar 

  • Taber S (1916) The growth of crystals under external pressure. Am J Sci 41:532–556

    Article  Google Scholar 

  • Weiss G (1992) Die Eis und Salzkristallisation im Porenraum von Sandsteinen und ihre Auswirkung auf das Gefüge unter besonderer Berücksichtigung gesteinsspezifischer Parameter. Münchner Geowissenschaftliche Abhandlungen B 9:62

    Google Scholar 

  • Wellman HW, Wilson AT (1965) Salt weathering, neglected geological erosive agent in coastal and arid environments. Nature 205:1097–1098

    Article  Google Scholar 

  • Wellman HW, Wilson AT (1968) Salt weathering or fretting. In: Fairbridge RW (eds) The encyclopedia of geomorphology. Stroudsburg, Pennsylvania

    Google Scholar 

  • Winkler EM (1968) Frost damage to stone and concrete: geological considerations. Eng Geol 2:315–323

    Article  Google Scholar 

  • Winkler EM, Wilhelm EJ (1970) Salt burst by hydration pressures in architectural stone in urban atmosphere. Bull Geol Soc Am 81:567–572

    Article  Google Scholar 

  • Winkler EM (1975) Stone: properties, durability in man’s environment, 2nd edn. Springer, Vienna, New York

    Google Scholar 

  • Winkler EM (1994) Stone in architecture, 3rd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Zehnder K, Arnold A (1989) Crystal growth in salt efflorescence. J Cryst Growth 97:513–521

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dirk Kirchner and Madlen Seidel for their help with the salt crystallisation tests. Thanks go to M Steiger for his comments. Our work was supported by the Deutsche Bundesstiftung Umwelt and the Deutsche Forschungsgemeinschaft (Si 438/17-1/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg Ruedrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruedrich, J., Siegesmund, S. Salt and ice crystallisation in porous sandstones. Environ Geol 52, 225–249 (2007). https://doi.org/10.1007/s00254-006-0585-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-006-0585-6

Keywords

Navigation