Skip to main content
Log in

An optimal procedure for identifying parameter structure and application to a confined aquifer

  • Original Article
  • Published:
Environmental Geology

Abstract

This study applies an optimal procedure to identify the spatial distribution of groundwater hydraulic conductivity for a confined aquifer in north Taiwan. The parameter structure is determined by the number of zones, zonation pattern, and an uniform hydraulic conductivity associated with each zone. The proposed optimal procedure uses the Voronoi diagram in describing zonation and applies simulated annealing algorithm to optimize its pattern and associated hydraulic conductivity. Three criteria are defined to stop the searching process, including the residual error, the parameter uncertainty, and the structure error. Observation hydraulic heads in years 2000 and 2001 and hydraulic conductivity value from pumping tests are used. The results show that the parameter structure with five zones conforms to the three criteria and, thus, is recommended for future groundwater simulation for the study site. Different heuristic algorithms may also play the role of simulated annealing to optimize the parameter structure. However, which optimization algorithm is more efficient is not discussed and requires further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aarts EHL, Van Laarhoven PJM (1985) Statistical cooling: A general approach to combinatorial optimization problems. Philips J Res 40:193–226

    Google Scholar 

  • Abdulla FA, Al-Khatib MA, Al-Ghazzawi ZD (2000) Development of groundwater modeling for the AZROQ basin. Environ Geol 40(1/2):11–18

    Google Scholar 

  • Dirchlet GL (1850) Uber die Reduction der Positeven quadratischen Formen mit drei unbestimmten ganzen Zahlen. Journal of fur die Reine und Angewandte Mathematik 40:209–227

    Google Scholar 

  • Dougherty DE, Marryott RA (1991) Optimal groundwater management 1. simulated annealing. Water Resour Res 27(10):2493–2508

    Google Scholar 

  • Hsu RT (1985) Application of parameter identification on groundwater pumpage inverse problem. MS Thesis Graduate Institute of Agricultural Engineering National Taiwan University

  • Kirkpatrick S (1984) Optimization by simulated annealing: quantitative studies. J Stat Phys 34(5/6):975–986

    Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    MathSciNet  Google Scholar 

  • Lin YP, Tan YC, Rouhani S (2001) Identifying spatial characteristics of transmissivity using simulated annealing and kriging methods. Environ Geol 41:200–208

    Google Scholar 

  • Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E, Chem J (1953) Equation of state calculations by fast computation machines. Phys 21:1087–1092

    CAS  Google Scholar 

  • Okabe A, Boots B, Sugihara K (1992) Spatial tessellations: concepts and applications of Voronoi Diagrams, 1st edn. John Wiley & Sons, Chichester

    Google Scholar 

  • Sophocleous MA, Koelliker JK, Govindaraju RS, Birdie T, Ramireddygari SR, Perkins SP (1999) Integrated numerical modeling for basin-wide water management: the case of the Rattlesnake Creek basin in south-central Kansas. J Hydrol 214: 179–196

    Google Scholar 

  • Sun NZ, Yang SL, Yeh WWG (1998) A proposed stepwise regression method for model structure identification. Water Resour Res 34(10):2561–2572

    Article  Google Scholar 

  • Thiessen AH (1911) Precipitation averages for large areas. Monthly Weather Rev 39:1082–1084

    Google Scholar 

  • Tsai FTC, Sun NZ, Yeh WWG (2003a) Global-local optimization for parameter structure identification in three-dimensional groundwater modeling. Water Resour Res 39(2):1043–1056

    Article  Google Scholar 

  • Tsai FTC, Sun NZ, Yeh WWG (2003b) A Combinatorial optimization scheme for parameter structure identification in ground water modeling. Ground Water 41(2):156–169

    Google Scholar 

  • Tung CP, Chou CA (2002) Application of tabu search to groundwater parameter zonation. J Am Water Resour Assoc 38(4):1115–1126

    Google Scholar 

  • Tung CP, Chou CA (2004) Pattern classification using tabu search to identify the spatial distribution of groundwater pumping. Hydrogeol J 12:488–496

    Google Scholar 

  • Tung CP, Tan CC, Lin YP (2003) Improving groundwater flow modeling using optimal zoning methods. Environ Geol 44:627–638

    Google Scholar 

  • Voronoi G (1908) Nouvelles applications des parameters continues a la theorie des formes quadratiques. Deuxieme Memoire: Recherches sur les parallelloedres primitives. Journal fur die Reine und Angewandte Mathematik 134:198–287

    Google Scholar 

  • Yeh WWG (1986) Review of parameter identification procedures in groundwater hydrology: The inverse problem. Water Resour Res 22(2):95–108

    Google Scholar 

  • Yeh WWG, Yoon YS (1981) Aquifer parameter identification with optimum dimension in parameterization. Water Resour Res 17(3):664–672

    Google Scholar 

  • Yeh WWG, Yoon YS, Lee KS (1983) Aquifer parameter identification with kriging and optimum parameterization. Water Resour Res 19(1):225–233

    Google Scholar 

  • Zheng C, Wang P (1996) Parameter structure identification using tabu search and simulated annealing. Adv in Water Resour 19(4):215–224

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Pin Tung.

Appendices

Appendix

Covariance matrix for parameter uncertainty

A covariance matrix as given by Yeh and Yoon (1981) is used quantify the parameter uncertainty. The equation is listed as follows:

$$ {\text{Cov}}_n = \frac{1} {{N_h \times T - n}}\sum\limits_{\mu = 1}^{N_h } {\sum\limits_{t = 1}^T {\left( {\frac{{h_\mu (\Omega _n^* ,\,t) - h_\mu ^o (t)}} {{h_\mu (\Omega _{_n }^* ,\,t)}}} \right)^2 } } \left[ {J^{\text{T}} J} \right]^{ - 1} $$

where J is the Jacobian matrix of hydraulic head with respect to K.

Structure error

The three components of structure error are calculated as follows:

$$ d_{_{n,n - 1} }^{{\text{obs}}} = \sum\limits_{g = 1}^{N_g } {\sum\limits_{t = 1}^T {\left| {\frac{{h_g \left( {\Omega _n^* ,t} \right) - h_g \left( {\Omega _{n - 1}^* ,t} \right)}} {{h_g \left( {\Omega _n^* ,t} \right)}}} \right|} } $$
$$ d_{^{n,n - 1} }^{{\text{par}}} = \sum\limits_{g = 1}^{N_g } {\left| {\frac{{K_g \left( {\Omega _n^* } \right) - K_g (\Omega _{n - 1}^* )}} {{K_g \left( {\Omega _n^* } \right)}}} \right|} $$
$$ d_{^{n,n - 1} }^{{\text{pre}}} = \sum\limits_{g = 1}^{N_g } {\sum\limits_{t = 1}^T {\left| {\frac{{h_g \left( {\Omega _n^* ,t} \right) - h_g \left( {\Omega _{n - 1}^* ,t} \right)}} {{h_g \left( {\Omega _n^* ,t} \right)}}} \right|} } $$

where Ng is the number of grids and T is the simulation or prediction periods.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tung, CP., Tan, CC. An optimal procedure for identifying parameter structure and application to a confined aquifer. Environ Geol 47, 1062–1071 (2005). https://doi.org/10.1007/s00254-005-1239-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-005-1239-9

Keywords

Navigation