Skip to main content
Log in

Enhanced selenocysteine biosynthesis for seleno-methylselenocysteine production in Bacillus subtilis

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Seleno-methylselenocysteine (SeMCys) is an effective component for selenium supplementation with anti-carcinogenic potential and can ameliorate neuropathology and cognitive deficits. In this study, we aimed to engineer Bacillus subtilis 168 for the microbial production of SeMCys. First, the accumulation of intracellular selenocysteine (SeCys) as the precursor of SeMCys was enhanced through overexpression of serine O-acetyltransferase, which was desensitized against feedback inhibition by cysteine. Next, the S-adenosylmethionine (SAM) synthetic pathway was optimized to improve methyl donor availability through expression of S-adenosylmethionine synthetase. Further, SeMCys was successfully produced through expression of the selenocysteine methyltransferase in SeCys and SAM-producing strain. The increased expression level of selenocysteine methyltransferase benefited the SeMCys production. Finally, all the heterologous genes were integrated into the genome of B. subtilis, and the strain produced SeMCys at a titer of 18.4 μg/L in fed-batch culture. This is the first report on the metabolic engineering of B. subtilis for microbial production of SeMCys and provides a good starting point for future pathway engineering to achieve the industrial-grade production of SeMCys.

Key points

• Expression of the feedback-insensitive serine O-acetyltransferase provided B. subtilis the ability of accumulating SeCys.

• SAM production was enhanced through expressing S-adenosylmethionine synthetase in B. subtilis.

• Expression of selenocysteine methyltransferase in SeCys and SAM-accumulating strain facilitated SeMCys production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The source data supporting the findings of this study are available within the paper.

References

  • Babaer D, Zheng M, Ivy MT, Zent R, Tiriveedhi V (2019) Methylselenol producing selenocompounds enhance the efficiency of mammaglobin-A peptide vaccination against breast cancer cells. Oncol Lett 18:6891–6898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biedendieck R, Yang Y, Deckwer WD, Malten M, Jahn D (2007) Plasmid system for the intracellular production and purification of affinity-tagged proteins in Bacillus megaterium. Biotechnol Bioeng 96:525–537

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Zeng L, Luo X, Mehboob MZ, Ao T, Lang M (2019) Identification and functional characterization of a novel selenocysteine methyltransferase from Brassica juncea L. J Exp Bot 70:6401–6416

    Article  CAS  PubMed  Google Scholar 

  • Dong C, Schultz JC, Liu W, Lian J, Huang L, Xu Z, Zhao H (2021) Identification of novel metabolic engineering targets for S-adenosyl-L-methionine production in Saccharomyces cerevisiae via genome-scale engineering. Metab Eng 66:319–327

    Article  CAS  PubMed  Google Scholar 

  • Du X, Shi Q, Zhao Y, Xie Y, Li X, Liu Q, Iqbal J, Zhang H, Liu X, Shen L (2021) Se-methylselenocysteine (SMC) improves cognitive deficits by attenuating synaptic and metabolic abnormalities in Alzheimer’s mice model: a proteomic study. ACS Chem Neurosci 12:1112–1132

    Article  CAS  PubMed  Google Scholar 

  • Even S, Burguiere P, Auger S, Soutourina O, Danchin A, Martin-Verstraete I (2006) Global control of cysteine metabolism by CymR in Bacillus subtilis. J Bacteriol 188:2184–2197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira RLU, Sena-Evangelista KCM, de Azevedo EP, Pinheiro FI, Cobucci RN, Pedrosa LFC (2021) Selenium in human health and gut microflora: bioavailability of selenocompounds and relationship with diseases. Front Nutr 8:685317

    Article  PubMed  PubMed Central  Google Scholar 

  • Goenaga-Infante H, Sturgeon R, Turner J, Hearn R, Sargent M, Maxwell P, Yang L, Barzev A, Pedrero Z, Camara C, Diaz Huerta V, Fernandez Sanchez ML, Sanz-Medel A, Emese K, Fodor P, Wolf W, Goldschmidt R, Vacchina V, Szpunar J, Valiente L, Huertas R, Labarraque G, Davis C, Zeisler R, Turk G, Rizzio E, Mackay LG, Myors RB, Saxby DL, Askew S, Chao W, Jun W (2008) Total selenium and selenomethionine in pharmaceutical yeast tablets: assessment of the state of the art of measurement capabilities through international intercomparison CCQM-P86. Anal Bioanal Chem 390:629–642

    Article  CAS  PubMed  Google Scholar 

  • Grijalba AC, Fiorentini EF, Wuilloud RG (2017) Ionic liquid-assisted separation and determination of selenium species in food and beverage samples by liquid chromatography coupled to hydride generation atomic fluorescence spectrometry. J Chromatogr A 1491:117–125

    Article  Google Scholar 

  • Gu Y, Xu X, Wu Y, Niu T, Liu Y, Li J, Du G, Liu L (2018) Advances and prospects of Bacillus subtilis cellular factories: from rational design to industrial applications. Metab Eng 50:109–121

    Article  CAS  PubMed  Google Scholar 

  • Han G, Hu X, Wang X (2016) Overexpression of methionine adenosyltransferase in Corynebacterium glutamicum for production of S-adenosyl-L-methionine. Biotechnol Appl Biochem 63:679–689

    Article  CAS  PubMed  Google Scholar 

  • He J, Deng J, Zheng Y, Gu J (2006) A synergistic effect on the production of S-adenosyl-L-methionine in Pichia pastoris by knocking in of S-adenosyl-L-methionine synthase and knocking out of cystathionine-beta synthase. J Biotechnol 126:519–527

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Qian J, Chu J, Wang Y, Zhuang Y, Zhang S (2009a) DNA shuffling of methionine adenosyltransferase gene leads to improved S-adenosyl-L-methionine production in Pichia pastoris. J Biotechnol 141:97–103

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Qian J, Chu J, Wang Y, Zhuang Y, Zhang S (2009b) Optimization of L-methionine feeding strategy for improving S-adenosyl-L-methionine production by methionine adenosyltransferase overexpressed Pichia pastoris. Appl Microbiol Biotechnol 83:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Ip C, Thompson HJ, Zhu Z, Ganther HE (2000) In vitro and in vivo studies of methylseleninic acid: evidence that a monomethylated selenium metabolite is critical for cancer chemoprevention. Cancer Res 60:2882–2886

    CAS  PubMed  Google Scholar 

  • Kamarthapu V, Rao KV, Srinivas PN, Reddy GB, Reddy VD (2008) Structural and kinetic properties of Bacillus subtilis S-adenosylmethionine synthetase expressed in Escherichia coli. Biochim Biophys Acta 1784:1949–1958

    Article  CAS  PubMed  Google Scholar 

  • Kashif M, Lu Z, Sang Y, Yan B, Shah SJ, Khan S, Azhar Hussain M, Tang H, Jiang C (2022) Whole-genome and transcriptome sequencing-based characterization of Bacillus Cereus NR1 from subtropical marine mangrove and its potential role in sulfur metabolism. Front Microbiol 13:856092

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim D, Ku B, Choi EM (2020) Se-methylselenocysteine stimulates migration and antioxidant response in HaCaT keratinocytes: implications for wound healing. J Trace Elem Med Biol 58:126426

    Article  CAS  PubMed  Google Scholar 

  • Kondoh M, Hirasawa T (2019) L-Cysteine production by metabolically engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 103:2609–2619

    Article  CAS  PubMed  Google Scholar 

  • Kopriva S, Buchert T, Fritz G, Suter M, Benda R, Schunemann V, Koprivova A, Schurmann P, Trautwein AX, Kroneck PM, Brunold C (2002) The presence of an iron-sulfur cluster in adenosine 5′-phosphosulfate reductase separates organisms utilizing adenosine 5′-phosphosulfate and phosphoadenosine 5′-phosphosulfate for sulfate assimilation. J Biol Chem 277:21786–21791

    Article  CAS  PubMed  Google Scholar 

  • Lacourciere GM, Levine RL, Stadtman TC (2002) Direct detection of potential selenium delivery proteins by using an Escherichia coli strain unable to incorporate selenium from selenite into proteins. P Natl Acad Sci USA 99:9150–9153

    Article  CAS  Google Scholar 

  • Lazard M, Dauplais M, Blanquet S, Plateau P (2015) Trans-sulfuration pathway seleno-amino acids are mediators of selenomethionine toxicity in Saccharomyces cerevisiae. J Biol Chem 290:10741–10750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SO, Yeon Chun J, Nadiminty N, Trump DL, Ip C, Dong Y, Gao AC (2006) Monomethylated selenium inhibits growth of LNCaP human prostate cancer xenograft accompanied by a decrease in the expression of androgen receptor and prostate-specific antigen (PSA). Prostate 66:1070–1075

    Article  CAS  PubMed  Google Scholar 

  • Lu P, Rangan A, Chan SY, Appling DR, Hoffman DW, Marcotte EM (2007) Global metabolic changes following loss of a feedback loop reveal dynamic steady states of the yeast metabolome. Metab Eng 9:8–20

    Article  CAS  PubMed  Google Scholar 

  • Lyi SM, Heller LI, Rutzke M, Welch RM, Kochian LV, Li L (2005) Molecular and biochemical characterization of the selenocysteine Se-methyltransferase gene and Se-methylselenocysteine synthesis in broccoli. Plant Physiol 138:409–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mapelli V, Hillestrom PR, Kapolna E, Larsen EH, Olsson L (2011) Metabolic and bioprocess engineering for production of selenized yeast with increased content of seleno-methylselenocysteine. Metab Eng 13:282–293

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Alarcon M, Cabrera-Vique C (2008) Selenium in food and the human body: a review. Sci Total Environ 400:115–141

    Article  CAS  PubMed  Google Scholar 

  • Neuhierl B, Thanbichler M, Lottspeich F, Bock A (1999) A family of S-methylmethionine-dependent thiol/selenol methyltransferases. Role in selenium tolerance and evolutionary relation. J Biol Chem 274:5407–5414

    Article  CAS  PubMed  Google Scholar 

  • Noji M, Inoue K, Kimura N, Gouda A, Saito K (1998) Isoform-dependent differences in feedback regulation and subcellular localization of serine acetyltransferase involved in cysteine biosynthesis from Arabidopsis thaliana. J Biol Chem 273:32739–32745

    Article  CAS  PubMed  Google Scholar 

  • Pei JF, Li YX, Tang H, Wei W, Ye BC (2022) PhoP- and GlnR-mediated regulation of metK transcription and its impact upon S-adenosyl-methionine biosynthesis in Saccharopolyspora erythraea. Microb Cell Fact 21:120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  • Phan TT, Nguyen HD, Schumann W (2006) Novel plasmid-based expression vectors for intra- and extracellular production of recombinant proteins in Bacillus subtilis. Protein Expres Purif 46:189–195

    Article  CAS  Google Scholar 

  • Qin X, Lu J, Zhang Y, Wu X, Qiao X, Wang Z, Chu J, Qian J (2020) Engineering Pichia pastoris to improve S-adenosyl- l-methionine production using systems metabolic strategies. Biotechnol Bioeng 117:1436–1445

    Article  CAS  PubMed  Google Scholar 

  • Reich HJ, Hondal RJ (2016) Why nature chose selenium. ACS Chem Biol 11:821–841

    Article  CAS  PubMed  Google Scholar 

  • Roje S, Chan SY, Kaplan F, Raymond RK, Horne DW, Appling DR, Hanson AD (2002) Metabolic engineering in yeast demonstrates that S-adenosylmethionine controls flux through the methylenetetrahydrofolate reductase reaction in vivo. J Biol Chem 277:4056–4061

    Article  CAS  PubMed  Google Scholar 

  • Salsi E, Campanini B, Bettati S, Raboni S, Roderick SL, Cook PF, Mozzarelli A (2010) A two-step process controls the formation of the bienzyme cysteine synthase complex. J Biol Chem 285:12813–12822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiavon M, Pilon-Smits EAH (2017) The fascinating facets of plant selenium accumulation - biochemistry, physiology, evolution and ecology. New Phytol 213:1582–1596

    Article  CAS  PubMed  Google Scholar 

  • Sors TG, Ellis DR, Na GN, Lahner B, Lee S, Leustek T, Pickering IJ, Salt DE (2005) Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J 42:785–797

    Article  CAS  PubMed  Google Scholar 

  • Sors TG, Martin CP, Salt DE (2009) Characterization of selenocysteine methyltransferases from Astragalus species with contrasting selenium accumulation capacity. Plant J 59:110–122

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Ohtsu I (2017) L-Cysteine metabolism and fermentation in microorganisms. Amino Acid Fermentation 159:129–151

    Article  CAS  Google Scholar 

  • Tanous C, Soutourina O, Raynal B, Hullo MF, Mervelet P, Gilles AM, Noirot P, Danchin A, England P, Martin-Verstraete I (2008) The CymR regulator in complex with the enzyme CysK controls cysteine metabolism in Bacillus subtilis. J Biol Chem 283:35551–35560

    Article  CAS  PubMed  Google Scholar 

  • Tarze A, Dauplais M, Grigoras I, Lazard M, Ha-Duong NT, Barbier F, Blanquet S, Plateau P (2007) Extracellular production of hydrogen selenide accounts for thiol-assisted toxicity of selenite against Saccharomyces cerevisiae. J Biol Chem 282:8759–8767

    Article  CAS  PubMed  Google Scholar 

  • Wada M, Takagi H (2006) Metabolic pathways and biotechnological production of L-cysteine. Appl Microbiol Biotechnol 73:48–54

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Jiang Y, Wu M, Zhu L, Yang L, Lin J (2019) Semi-rationally engineered variants of S-adenosylmethionine synthetase from Escherichia coli with reduced product inhibition and improved catalytic activity. Enzyme Microb Technol 129:109355

    Article  CAS  PubMed  Google Scholar 

  • Wei XN, Cao MJ, Li J, Li H, Song Y, Du CHJB, Engineering B (2014) Synthesis of S-adenosyl-L-methionine in Escherichia coli. Biotechnol Bioproc E 19:958–964

    Article  CAS  Google Scholar 

  • Wei L, Wang H, Xu N, Zhou W, Ju J, Liu J, Ma Y (2019) Metabolic engineering of Corynebacterium glutamicum for L-cysteine production. Appl Microbiol Biotechnol 103:1325–1338

    Article  CAS  PubMed  Google Scholar 

  • White PJ (2016) Selenium Accumulation by Plants. Ann Bot-London 117:217–235

    CAS  Google Scholar 

  • Wu Y, Liu Y, Lv X, Li J, Du G, Liu L (2020) CAMERS-B: CRISPR/Cpf1 assisted multiple-genes editing and regulation system for Bacillus subtilis. Biotechnol Bioeng 117:1817–1825

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, Shiloach J, Betenbaugh MJ (2014) Engineering cells to improve protein expression. Curr Opin Struct Biol 26:32–38

    Article  CAS  PubMed  Google Scholar 

  • Zhang XZ, Cui ZL, Hong Q, Li SP (2005) High-level expression and secretion of methyl parathion hydrolase in Bacillus subtilis WB800. Appl Environ Microbiol 71:4101–4103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SQ, Zhang HB, Zhang Y (2018) Quantification of selenomethionine in plasma using UPLC-MS/MS after the oral administration of selenium-enriched yeast to rats. Food Chem 241:1–6

    Article  CAS  PubMed  Google Scholar 

  • Almagro Armenteros, J. J., Salvatore, M., Emanuelsson, O., Winther, O., von Heijne, G., Elofsson, A., and Nielsen, H. (2019). Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance 2.

  • Gupta, M., and Gupta, S. (2017). An overview of selenium uptake, metabolism, and toxicity in plants. Front Plant Sci 7.

  • Martinez, F. G., Moreno-Martin, G., Pescuma, M., Madrid-Albarran, Y., and Mozzi, F. (2020). Biotransformation of selenium by lactic acid bacteria: formation of seleno-nanoparticles and seleno-amino acids. Frontiers in Bioengineering and Biotechnology 8.

  • Ullah, A., Yin, X., Wang, F., Xu, B., Mirani, Z. A., Xu, B., Chan, M. W. H., Ali, A., Usman, M., Ali, N., and Naveed, M. (2021). Biosynthesis of selenium nanoparticles (via Bacillus subtilis BSN313), and their isolation, characterization, and bioactivities. Molecules 26.

Download references

Acknowledgements

We are grateful to Prof. Long Liu (Jiangnan University, Wuxi, China) for generously providing the plasmids.

Funding

This study was financially supported by the National Natural Science Foundation of China (nos. 21808005 and PXM2019_014213_000007), Beijing Municipal Education Commission (no. KM201910011005), and the Open Project Program from Key Laboratory of Cleaner Production and Integrated Resource Utilization of China, Beijing Technology and Business University (BTBU) (no. CP-2020-YB12).

Author information

Authors and Affiliations

Authors

Contributions

X.Y. and F.W. designed the experiments. Y.Z. and H.Y. constructed the plasmids. X.Y., Y.Z., and T.M. performed the other experiments. X.Y. and Y.L. analyzed the data. All authors discussed the results. X.Y. prepared the manuscript. All authors contributed to the revision of the manuscript.

Corresponding author

Correspondence to Fenghuan Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 776 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Zhou, Y., Yang, H. et al. Enhanced selenocysteine biosynthesis for seleno-methylselenocysteine production in Bacillus subtilis. Appl Microbiol Biotechnol 107, 2843–2854 (2023). https://doi.org/10.1007/s00253-023-12482-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-023-12482-8

Keywords

Navigation