Skip to main content
Log in

Primers for specific detection and identification of Pseudomonas syringae pv. maculicola and P. cannabina pv. alisalensis

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial leaf spot and bacterial leaf blight are global threats to the cultivation of cruciferous vegetables, and it is necessary to develop methods to easily detect, identify, and distinguish the causative pathogens Pseudomonas syringae pv. maculicola (Psm) and P. cannabina pv. alisalensis (Pca). Here, we used the sequence specificity of the exchangeable effector loci flanking the hrp gene cluster to design primers that can help detect and discriminate between Psm and Pca. Primers common to both bacteria (hrpK_fw1 and hrpK_fw2) were designed within hrpK at the end of the hrp gene cluster. Psm-specific primers (MAC_rv1 and MAC_rv2) were designed in hopPtoB1 and Pca-specific primers (ALS_rv1 and ALS_rv2) were designed in hopX1 adjacent to hrpK. PCR using hrpK_fw1 and MAC_rv1 or hrpK_fw2 and MAC_rv2 amplified DNA fragments of only Psm, P. syringae pv. tomato (causal agent of tomato bacterial speck), and P. syringae pv. spinaciae (causal agent of spinach bacterial leaf spot), among 76 strains of phytopathogenic bacteria. PCR using hrpK_fw1 and ALS_rv1 or hrpK_2 and ALS_rv2 amplified DNA fragments of only Pca. Multiplex PCR with these primers could easily distinguish Psm and Pca from bacterial colonies isolated on growth media and detect the pathogen in symptomatic leaves. Multiplex nested PCR with the primers detected contamination in one Psm- and/or one Pca-infected seeds in 1000 seeds. These results suggest that these PCR primers could help detect and discriminate Psm and Pca.

Key points

We investigated Pseudomonas syringae pv. maculicola and P. cannabina pv. alisalensis.

Novel primers common to both bacteria were designed following genome comparison.

Multiplex PCR with new primers could discriminate Psm and Pca.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

Download references

Author information

Authors and Affiliations

Authors

Contributions

YI carried out sequence alignment, designed primers, and drafted the manuscript. YT participated in the design of the study and performed a validity verification test. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Yasuhiro Inoue.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 505 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, Y., Takikawa, Y. Primers for specific detection and identification of Pseudomonas syringae pv. maculicola and P. cannabina pv. alisalensis. Appl Microbiol Biotechnol 105, 1575–1584 (2021). https://doi.org/10.1007/s00253-021-11118-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11118-z

Keywords

Navigation