Skip to main content
Log in

Construction and application of a “superplasmid” for enhanced production of antibiotics

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

More than two-third of known antibiotics are produced by actinomycetes of the genus Streptomyces. Unfortunately, the production rate from Streptomyces natural antibiotic is extremely slow and thus cannot satisfy industrial demand. In this study, the production of antibiotics by Streptomyces is enhanced by a “superplasmid” which including global regulatory factors afsR, cyclic adenosine receptor protein (CRP), RNA polymerase beta subunits (rpoB) with point mutation and acetyl coenzyme A carboxylase gene (accA2BE), these elements are controlled by the PermE* promoter and then transfer into Streptomyces coelicolor M145, Streptomyces mutabilis TRM45540, Streptomyces hygroscopicus XM201, and Streptomyces hygroscopicus ATCC29253 by conjugation to generate exconjugants. NMR, HPLC, and LC–MS analyses revealed that the superplasmid led to the overproduction of actinorhodin (101.90%), undecylprodigiosin (181.60%) in S. coelicolor M145:: pLQ003, of rapamycin (110%), hygrocin A (163.4%) in S. hygroscopicus ATCC29253:: pLQ003, and of actinomycin D (11.78%) in S. mutabilis TRM45540:: pLQ003, and also to the downregulation of geldanamycin in S. hygroscopicus XM201, but we found that mutant strains in mutant strains of S. hygroscopicus XM201 with regulatory factors inserted showed several peaks that were not found in wild-type strains. The results of the present work indicated that the regulator net working in Streptomyces was not uniform, the superplasmid we constructed possibly caused this overproduction and downregulation in different Streptomyces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bachmann B, Van Lanen SG, Baltz RH (2014) Microbial genome mining for accelerated natural products discovery: is a renaissance in the making. J Ind Microbiol Biotechnol 41(2):75–84

    Google Scholar 

  • Baltz RH (2014) Spontaneous and induced mutations to rifampicin, streptomycin and spectinomycin resistances in actinomycetes: mutagenic mechanisms and applications for strain improvement. J Antibiot (Tokyo) 67(9):19–24

    Google Scholar 

  • Bhatia SK, Lee BR, Sathiyanarayanan G, Song HS, Kim J, Jeon JM, Kim JH, Park SH, Yu JH, Park K, Yang YH (2016a) Medium engineering for enhanced production of undecylprodigiosin antibiotic in Streptomyces coelicolor using oil palm biomass hydrolysate as a carbon source. Bioresour Technol 217:1–9

    Google Scholar 

  • Bhatia SK, Lee BR, Sathiyanarayanan G, Song HS, Kim J, Jeon JM, Yoon JJ, Ahn J, Park K, Yang YH (2016b) Biomass-derived molecules modulate the behavior of Streptomyces coelicolor for antibiotic production. Chem Soc Rev 46(23):7176–7190

    Google Scholar 

  • Botas A, Perez-Redondo R, Rodriguez-Garcia A, Alvarez-Alvarez R, Yague P, Manteca A, Liras P (2018) ArgR of Streptomyces coelicolor is a pleiotropic transcriptional regulator: effect on the transcriptome, antibiotic production, and differentiation in liquid cultures. Front Microbiol 9:361

    PubMed  PubMed Central  Google Scholar 

  • Caballero JL, Malpartida F, Hopwood DA (1991) Transcriptional organization and regulation of an antibiotic export complex in the producing Streptomyces culture. Mol Gen Genet 228(3):372–380

    CAS  PubMed  Google Scholar 

  • Caixia Lai JX, Tozawa Y, Okamoto-Hosoya Y, Yao X, Ochi K (2002) Genetic and physiological characterization of rpoB mutations that activate antibiotic production in Streptomyces lividans. Microbiology 148:3365–3373

    PubMed  Google Scholar 

  • Chattopadhyay R, Parrack P (2006) Cyclic AMP-dependent functional forms of cyclic AMP receptor protein from Vibrio cholerae. Arch Biochem Biophys 447(1):1–6

    Google Scholar 

  • Chaudhary AK, Singh B, Maharjan S, Jha AK, Kim BG, Sohng JK (2014) Switching antibiotics production on and off in actinomycetes by an IclR family transcriptional regulator from Streptomyces peucetius ATCC 27952. J Microbiol Biotechnol 24(8):65–72

    Google Scholar 

  • Chen K, Zhang D, Liu S, Wang NS, Wang M, Du G, Chen J (2013) Improvement of transglutaminase production by extending differentiation phase of Streptomyces hygroscopicus: mechanism and application. Appl Microbiol Biotechnol 97(17):1–9

    Google Scholar 

  • Dai S, Ouyang Y, Wang G, Li X (2011) Streptomyces autolyticus JX-47 large-insert bacterial artificial chromosome library construction and identification of clones covering geldanamycin biosynthesis gene cluster. Curr Microbiol 63(1):68–74

    CAS  PubMed  Google Scholar 

  • Dang L, Liu J, Wang C, Liu H, Wen J (2017) Enhancement of rapamycin production by metabolic engineering in Streptomyces hygroscopicus based on genome-scale metabolic model. J Ind Microbiol Biotechnol 44(2):259–270

    CAS  PubMed  Google Scholar 

  • Derouaux A, Halici S, Nothaft H, Neutelings T, Moutzourelis G, Dusart J, Titgemeyer F, Rigali S (2004) Deletion of a cyclic AMP receptor protein homologue dminishes germination and affects morphological development of Streptomyces coelicolor. J Bacteriol 186(6):1893–1897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Donovan GT, Norton JP, Bower JM, Mulvey MA (2013) Adenylate cyclase and the cyclic AMP receptor protein modulate stress resistance and virulence capacity of uropathogenic Escherichia coli. Infect Immun 81(1):49–58

    Google Scholar 

  • Espert SM, Elsinghorst EA, Munson GP (2011) The tib adherence locus of enterotoxigenic Escherichia coli is regulated by cyclic AMP receptor protein. J Bacteriol 193(6):69–76

    Google Scholar 

  • Flett F, Mersinias V, Smith CP (1997) High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett 155(2):3–9

    Google Scholar 

  • Floriano B, Bibb M (1996) afsR is a pleiotropic but conditionally requiredregulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 21(2):385–396

    CAS  PubMed  Google Scholar 

  • Fujii T, Gramajo HC, Takano E, Bibb MJ (1996) redD and actII-ORF4, pathway-specific regulatory genes for antibiotic production in Streptomyces coelicolor A3(2), are transcribed in vitro by an RNA polymerase holoenzyme containing sigma hrdD. J Bacteriol 178(11):2–5

    Google Scholar 

  • Fujimoto N, Toyama A, Takeuchi H (2002) Binding modes of cyclic AMP and environments of tryptophan residues in 1:1 and 1:2 complexes of cyclic AMP receptor protein and cyclic AMP. Biopolymers 67(3):86–96

    Google Scholar 

  • Fussenegger M, Morris RP, Fux C, Rimann M, von Stockar B, Thompson CJ, Bailey JE (2000) Streptogramin-based gene regulation systems for mammalian cells. Nat Biotechnol 18(11):3–8

    Google Scholar 

  • Gao C, Hindra MD, Yin C, Elliot MA (2012a) Crp is a global regulator of antibiotic production in Streptomyces. MBio 3(6)

  • Gao Z, Li F, Wu G, Zhu Y, Yu T, Yu S (2012b) Roles of hinge region, loops 3 and 4 in the activation of Escherichia coli cyclic AMP receptor protein. Int J Biol Macromol 50(1):1–6

    PubMed  Google Scholar 

  • Geng H, Liu H, Liu J, Wang C, Wen J (2017) Insights into the metabolic mechanism of rapamycin overproduction in the shikimate-resistant Streptomyces hygroscopicus strain UV-II using comparative metabolomics. World J Microbiol Biotechnol 33(6):101

    PubMed  Google Scholar 

  • He W, Lei J, Liu Y, Wang Y (2008) The LuxR family members GdmRI and GdmRII are positive regulators of geldanamycin biosynthesis in Streptomyces hygroscopicus 17997. Arch Microbiol 189(5):1–10

    Google Scholar 

  • Hong Y-S, Lee D, Kim W, Jeong J-K, Kim C-G, Sohng JK, Lee J-H, Paik S-G, Lee JJ (2004) Inactivation of the carbamoyltransferase gene refines post-polyketide synthase modification steps in the biosynthesis of the antitumor agent geldanamycin. Am Chem Soc 126:11142–11143

    CAS  Google Scholar 

  • Horinouchi S (2003) AfsR as an integrator of signals that are sensed by multiple serine/threonine kinases in Streptomyces coelicolor A3(2). J Ind Microbiol Biotechnol 30(8):2–7

    Google Scholar 

  • Hu Zeng ZD, Wen S, Sun Y, Xu W, He Z, Zhai G, Liu Y (2015) Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system. Appl Microbiol Biotechnol:10575–10585

    CAS  PubMed  Google Scholar 

  • Hu H, Zhang Q, Ochi K (2002) Activation of antibiotic biosynthesis by specified mutations in the rpoB gene (encoding the RNA polymerase subunit) of Streptomyces lividans. J Bacteriol 184(14):3984–3991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang M, Yin M, Wu S, Han X, Ji K, Wen M, Lu T (2017) GdmRIII, a TetR family transcriptional regulator, controls geldanamycin and elaiophylin biosynthesis in Streptomyces autolyticus CGMCC0516. Sci Rep 7(1):4803

    PubMed  PubMed Central  Google Scholar 

  • Kang SG, Jin W, Bibb M, Lee KJ (1998) Actinorhodin and undecylprodigiosin production in wild-type and relA mutant strains of Streptomyces coelicolor A3(2) grown in continuous culture. FEMS Microbiol Lett 168(2):1–6

    Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical streptomyces genetics. John Innes Foundation, pp 93–95

  • Kim W (2010) Identification of three positive regulators in the geldanamycin PKS gene cluster of Streptomyces hygroscopicus JCM4427. Int J Microbiol Biotechnol 20(11):1484–1490

    CAS  Google Scholar 

  • Kim YJ, Song JY, Moon MH, Smith CP, Hong SK, Chang YK (2007) pH shock induces overexpression of regulatory and biosynthetic genes for actinorhodin productionin Streptomyces coelicolor A3(2). Appl Microbiol Biotechnol 76(5):19–30

    Google Scholar 

  • Kim MJ, Nihira T, Choi S-U (2012) Cloning and characterization of afsR homologue regulatory gene from Streptomyces acidiscabies ATCC 49003. J Korean Soc Appl Biol Chem 55(5):663–668

    CAS  Google Scholar 

  • Kung DW, Griffith DA, Esler WP, Vajdos FF, Mathiowetz AM, Doran SD, Amor PA, Bagley SW, Banks T, Cabral S, Ford K, Garcia-Irizarry CN, Landis MS, Loomis K, McPherson K, Niosi M, Rockwell KL, Rose C, Smith AC, Southers JA, Tapley S, Tu M, Valentine JJ (2015) Discovery of spirocyclic-diamine inhibitors of mammalian acetyl CoA-carboxylase. Bioorg Med Chem Lett 25(22):2–6

    Google Scholar 

  • Kuscer E, Coates N, Challis I, Gregory M, Wilkinson B, Sheridan R, Petkovic H (2007) Roles of rapH and rapG in positive regulation of rapamycin biosynthesis in Streptomyces hygroscopicus. J Bacteriol 189(13):56–63

    Google Scholar 

  • Li S, Wang H, Li Y, Deng J, Lu C, Shen Y, Shen Y (2014) Biosynthesis of hygrocins, antitumor naphthoquinone ansamycins produced by Streptomycessp. LZ35. ChemBioChem 15(1):94–102

    PubMed  Google Scholar 

  • Little R Jr, Bremer H (1983) Physiological characterizaton of Escherichia coli rpoB mutants with abnormal control of ribosome synthesis. mSystems:1162–1170

  • Liu WH, Klapper A (2017) Afsrs synthesis with the extended euclidean rational approximation algorithm. Adv Math Commun 11(1):139–150

    Google Scholar 

  • Liu G, Chater KF, Chandra G, Niu G, Tan H (2013a) Molecular regulation of antibiotic biosynthesis in streptomyces. Microbiol Mol Biol Rev 77(1):12–43

    Google Scholar 

  • Liu Z, Zhao X, Bai F (2013b) Production of xylanase by an alkaline-tolerant marine-derived Streptomyces viridochromogenes strain and improvement by ribosome engineering. Appl Microbiol Biotechnol 97(10):1–8

    Google Scholar 

  • Long W, Fang B, Ignaszak A, Wu Z, Wang YJ, Wilkinson D (2017) Biomass-derived nanostructured carbons and their composites as anode materials for lithium ion batteries. Chem Soc Rev 46(23):7176–7190

    CAS  PubMed  Google Scholar 

  • Loomba R, Kayali Z, Noureddin M, Ruane P, Lawitz E, Gitlin N, Bennett M, Harting E, McColgan BJ, Myers RP, Subramanian M, McHutchison JG, Middleton MS, Sirlin CB, Lai M, Charlton MR, Harrison SA (2017) Acetyl-coA carboxylase (ACC) inhibitor GS-0976 leads to significant improvements in MRI-PDFF in a phase 2, randomized, placebo-controlled trial of patients with NASH. Hepatology 66(6):1260a–1261a

    Google Scholar 

  • López-García M, Yagüe P, González-Quiñónez N, Rioseras B, Manteca A (2018) The SCO4117 ECF sigma factor pleiotropically controls secondary metabolism and morphogenesis in. Front Microbiol 9:312

    PubMed  PubMed Central  Google Scholar 

  • Luo J, Hong Y, Lu Y, Qiu S, Chaganty BK, Zhang L, Wang X, Li Q, Fan Z (2017) Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab. Cancer Lett 384:39–49

    CAS  PubMed  Google Scholar 

  • Maharjan S, Oh T-J, Lee HC, Sohng JK (2008) Heterologous expression of metK1-sp and afsR-sp in Streptomyces venezuelae for the production of pikromycin. Biotechnol Lett 30(9):1621–1626

    CAS  PubMed  Google Scholar 

  • Maharjan S, Park JW, Yoon YJ, Lee HC, Sohng JK (2010) Metabolic engineering of Streptomyces venezuelae for malonyl-CoA biosynthesis to enhance heterologous production of polyketides. Biotechnol Lett 32(2):77–82

    Google Scholar 

  • Martin JF, Sola-Landa A, Santos-Beneit F, Fernandez-Martinez LT, Prieto C, Rodriguez-Garcia A (2011) Cross-talk of global nutritional regulators in the control of primary and secondary metabolism in Streptomyces. Microb Biotechnol 4(2):165–174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin JF, Rodriguez-Garcia A, Liras P (2017) The master regulator PhoP coordinates phosphate and nitrogen metabolism, respiration, cell differentiation and antibiotic biosynthesis: comparison in Streptomyces coelicolor and Streptomyces avermitilis. J Antibiot (Tokyo) 70(5):534–541

    CAS  Google Scholar 

  • Martin-Martin S, Rodriguez-Garcia A, Santos-Beneit F, Franco-Dominguez E, Sola-Landa A, Martin JF (2017) Self-control of the PHO regulon: the PhoP-dependent protein PhoU controls negatively expression of genes of PHO regulon in Streptomyces coelicolor. J Antibiot (Tokyo):1–10

  • Maughan H, Galeano B, Nicholson WL (2004) Novel rpoB mutations conferring rifampin resistance on Bacillus subtilis: global effects on growth, competence, sporulation, and germination. J Bacteriol 186(8):2481–2486

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKenzie N, Nodwell J (2007) Phosphorylated AbsA2 negatively regulates antibiotic production in Streptomyces coelicolor through interactions with pathway-specific regulatory gene promoters. J Bacteriol 189(14):84–92

    Google Scholar 

  • Niu G, Chater KF, Tian Y, Zhang J, Tan H (2016) Specialised metabolites regulating antibiotic biosynthesis in Streptomyces spp. FEMS Microbiol Rev 40(4):54–73

    Google Scholar 

  • Ochi K, Hosaka T (2013) New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biotechnol 97(1):87–98

    CAS  PubMed  Google Scholar 

  • Parajuli N, Viet HT, Ishida K, Tong HT, Lee HC, Liou K, Sohng JK (2005) Identification and characterization of the afsR homologue regulatory gene from Streptomyces peucetius ATCC 27952. Res Microbiol 156(5–6):7–12

    Google Scholar 

  • Paudel S, Lee HC, Kim BS, Sohng JK (2011) Enhancement of pradimicin production in Actinomadura hibisca P157-2 by metabolic engineering. Microbiol Res 167(1):2–9

    Google Scholar 

  • Piette A, Derouaux A, Gerkens P, Noens EE, Mazzucchelli G, Vion S, Koerten HK, Titgemeyer F, De Pauw E, Leprince P, van Wezel GP, Galleni M, Rigali S (2005) From dormant to germinating spores of Streptomyces coelicolor A3(2): new perspectives from the crp null mutant. J Proteome Res 4(5):699–708

    Google Scholar 

  • Praveen V, Tripathi CKM, Bihari V, Srivastava SC (2008) Production of actinomycin-d by the mutant of a new isolate of Streptomyces sindenensis. Braz J Microbiol 39:689–692

    PubMed  PubMed Central  Google Scholar 

  • Queiroz Sousa MFV, Lopes CE, Pereira JN (2001) A chemically defined medium for production of actinomycin D by Streptomyces parvulus. Braz Arch Biol Technol 44(3):227–231

    Google Scholar 

  • Rascher A, Hu Z, Viswanathan N, Schirmer A, Reid R, Nierman WC, Lewis M, Hutchinson CR (2003) Cloning and characterization of a gene cluster for geldanamycin production in Streptomyces hygroscopicus NRRL 3602. FEMS Microbiol Immunol 218(2):223–230

    CAS  Google Scholar 

  • Ryu YG, Butler MJ, Chater KF, Lee KJ (2006) Engineering of primary carbohydrate metabolism for increased production of actinorhodin in Streptomyces coelicolor. Appl Environ Microbiol 72(11):7132–7139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santos-Beneit F, Rodriguez-Garcia A, Martin JF (2011) Complex transcriptional control of the antibiotic regulator afsS in Streptomyces: PhoP and AfsR are overlapping, competitive activators. J Bacteriol 193(9):42–51

    Google Scholar 

  • Sawai R, Suzuki A, Takano Y, Lee PC, Horinouchi S (2004) Phosphorylation of AfsR by multiple serine/threonine kinases in Streptomyces coelicolor A3(2). Gene 334:53–61

    CAS  PubMed  Google Scholar 

  • Shi J, Pan J, Liu L, Yang D, Lu S, Zhu X, Shen B, Duan Y, Huang Y (2016) Titer improvement and pilot-scale production of platensimycin from Streptomyces platensis SB12026. J Ind Microbiol Biotechnol 43(7):27–35

    Google Scholar 

  • Sidney Farber GDA, Evans A, Mitus A (1960) Clinical studies of actinomycin D with special reference to Wilms’ tumor in children. J Urol 168:2560–2562

    Google Scholar 

  • Talà ADF, Gallo G, Pinatel E, Calcagnile M, Testini M, Fico D, Rizzo D, Sutera A, Renzone G, Scaloni A (2018) Pirin: a novel redox-sensitive modulator of primary and secondary metabolism in Streptomyces. Metab Eng 48(undefined):254-268

    PubMed  Google Scholar 

  • Tomono A, Shimazu T, Inoue H, Nagasawa H, Yoshida M, Ohnishi Y, Horinouchi S (2006) Self-activation of serine/threonine knase AfsK on autophosphorylation at threonine-168. J Antibiot 59(2):117–123

    CAS  PubMed  Google Scholar 

  • Wang W, Wang H, Hu H, Peng H, Zhang X (2015) Overexpression of afsR and optimization of metal chloride to improve lomofungin production in Streptomyces lomondensis S015. J Microbiol Biotechnol 25(5):672–680

    CAS  PubMed  Google Scholar 

  • Wang H, Zhao G, Ding X (2017) Morphology engineering of Streptomyces coelicolor M145 by sub-inhibitory concentrations of antibiotics. Sci Rep 7(1):13226

    PubMed  PubMed Central  Google Scholar 

  • Wei J, Zhang Y, Yu TY, Sadre-Bazzaz K, Rudolph MJ, Amodeo GA, Symington LS, Walz T, Tong L (2016) A unified molecular mechanism for the regulation of acetyl-CoA carboxylase by phosphorylation. Cell Discov 2:16044

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C-Z (2012) New geldanamycin analogs from Streptomyces hygroscopicus. J Microbiol Biotechnol 22(11):1478–1481

    CAS  PubMed  Google Scholar 

  • Yan H, Bao F, Zhao L, Yu Y, Tang J, Zhou X (2015) Cyclic AMP (cAMP) receptor protein-cAMP complex regulates heparosan production in Escherichia coli strain nissle 1917. Appl Environ Microbiol 81(22):7687–7696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin S, Wang X, Shi M, Yuan F, Wang H, Jia X, Yuan F, Sun J, Liu T, Yang K, Zhang Y, Fan K, Li Z (2017) Improvement of oxytetracycline production mediated via cooperation of resistance genes in Streptomyces rimosus. Sci China Life Sci 60(9):992–999

    CAS  PubMed  Google Scholar 

  • Yoo Y, Hwang J, Shin H, Cui H, Lee J, Yoon Y (2015) Characterization of negative regulatory genes for the biosynthesis of rapamycin in Streptomyces rapamycinicus and its application for improved production. J Ind Microbiol Biotechnol 42(1):25–35

    Google Scholar 

  • Zhu H, Sandiford SK, van Wezel GP (2014) Triggers and cues that activate antibiotic production by actinomycetes. J Ind Microbiol Biotechnol 41(2):371–386

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (31870089), the Natural Science Foundation for Distinguished Young Scholars of Hubei Province of China (No. 2018CFA069), the fundamental Research Funds for the Central Universities (No. 2662018PY053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing He.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approved

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1268 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Lin, Q., Li, X. et al. Construction and application of a “superplasmid” for enhanced production of antibiotics. Appl Microbiol Biotechnol 104, 1647–1660 (2020). https://doi.org/10.1007/s00253-019-10283-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10283-6

Keywords

Navigation