Skip to main content

Advertisement

Log in

Production of HIV-1-based virus-like particles for vaccination: achievements and limits

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Over the past years, much knowledge has been gained about the HIV-1 virus structure and infection cycle. This knowledge has been used to conceive different types of potential vaccines and vaccination strategies. This review focuses on the characteristics of the virus and the vaccines that have been developed, particularly on those using virus-like particles, as well as on the developments for their production and purification. The production of HIV-1 VLPs has been investigated in different platforms such as, yeast, plants, insect and mammalian cells. Their purification follows the same rational as for viral vectors: clarification, nuclease treatment, concentration/capture, polishing, formulation and viral clearance. Analytical techniques to characterise the obtained productions will be of paramount relevance for their final application, considering that the raw production obtained in bioreactors comprises not only the VLPs of interest but also many other extracellular vesicles. Finally, it should also be considered that VLPs are prone to carry host cell proteins and DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abram ME, Ferris AL, Shao W, Alvord WG, Hughes SH (2010) Nature, position, and frequency of mutations made in a single cycle of HIV-1 replication. J Virol 84:9864–9878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asbach B, Wagner R (2017) Particle-based delivery of the HIV envelope protein. Curr Opin HIV AIDS 12:265–271

    Article  CAS  PubMed  Google Scholar 

  • Ausubel LJ, Hall C, Sharma A, Shakeley R, Lopez P, Quezada V, Couture S, Laderman K, McMahon R, Huang P, Hsu D, Couture L (2012) Production of CGMP-Grade Lentiviral Vectors. Bioprocess Int 10:32–43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Babst M, Katzmann DJ, Estepa-Sabal EJ, Meerloo T, Emr SD (2002a) Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev Cell 3:271–282

    Article  CAS  PubMed  Google Scholar 

  • Babst M, Katzmann DJ, Snyder WB, Wendland B, Emr SD (2002b) Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev Cell 3:283–289

    Article  CAS  PubMed  Google Scholar 

  • Barouch DH, Picker LJ (2014) Novel vaccine vectors for HIV-1. Nat Rev Microbiol 12:765–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beltran-Pavez C, Ferreira CB, Merino-Mansilla A, Fabra-Garcia A, Casadella M, Noguera-Julian M, Paredes R, Olvera A, Haro I, Brander C, Garcia F, Gatell JM, Yuste E, Sanchez-Merino V (2018) Guiding the humoral response against HIV-1 toward a MPER adjacent region by immunization with a VLP-formulated antibody-selected envelope variant. PLoS One 13:e0208345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benen TD, Tonks P, Kliche A, Kapzan R, Heeney JL, Wagner R (2014) Development and immunological assessment of VLP-based immunogens exposing the membrane-proximal region of the HIV-1 gp41 protein. J Biomed Sci 21:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Berzofsky JA, Berzofsky JA, Ahlers JD, Ahlers JD, Janik J, Janik J, Morris J, Morris J, Oh S, Oh S, Terabe M, Terabe M, Belyakov IM, Belyakov IM (2004) Progress on new vaccine strategies against chronic viral infections. J Clin Invest 114:450–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besnard L, Fabre V, Fettig M, Gousseinov E, Kawakami Y, Laroudie N, Scanlan C, Pattnaik P (2016) Clarification of vaccines: an overview of filter based technology trends and best practices. Biotechnol Adv 34:1–13. https://doi.org/10.1016/j.biotechadv.2015.11.005

    Article  CAS  PubMed  Google Scholar 

  • Bieniasz PD (2009) The cell biology of HIV-1 virion genesis. Cell Host Microbe 5:550–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonsignori M, Liao H-X, Gao F, Williams WB, Alam SM, Montefiori DC, Haynes BF (2017) Antibody-virus co-evolution in HIV infection: paths for HIV vaccine development. Immunol Rev 275:145–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouamr F, Scarlata S, Carter C (2003) Role of myristylation in HIV-1 Gag assembly. Biochemistry 42:6408–6417

    Article  CAS  PubMed  Google Scholar 

  • Brandes N, Linial M (2016) Gene overlapping and size constraints in the viral world. Biol Direct 11:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briggs JAG, Kräusslich H-G (2011) The molecular architecture of HIV. J Mol Biol 410:491–500

    Article  CAS  PubMed  Google Scholar 

  • Briggs JAG, Riches JD, Glass B, Bartonova V, Zanetti G, Krausslich H-G (2009) Structure and assembly of immature HIV. Proc Natl Acad Sci 106:11090–11095

    Article  PubMed  PubMed Central  Google Scholar 

  • Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R, Li D, Gilbert PB, Lama JR, Marmor M, del Rio C, McElrath MJ, Casimiro DR, Gottesdiener KM, Chodakewitz JA, Corey L, Robertson MN, Step Study Protocol Team (2008) Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372:1881–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buonaguro L, Buonaguro FM, Tornesello ML, Mantas D, Beth-Giraldo E, Wagner R, Michelson S, Prevost M-C, Wolf H, Giraldo G (2001) High efficient production of Pr55gag virus-like particles expressing multiple HIV-1 epitopes, including a gp120 protein derived from an Ugandan HIV-1 isolate of subtype A. Antiviral Res 49:35–47

  • Buonaguro L, Racioppi L, Tornesello ML, Arra C, Visciano ML, Biryahwaho B, Sempala SDK, Giraldo G, Buonaguro FM (2002) Induction of neutralizing antibodies and cytotoxic T lymphocytes in Balb/c mice immunized with virus-like particles presenting a gp120 molecule from a HIV-1 isolate of clade A. Antivir Res 54:189–201

    Article  CAS  PubMed  Google Scholar 

  • Buonaguro L, Visciano ML, Tornesello ML, Tagliamonte M, Biryahwaho B, Buonaguro FM (2005) Induction of systemic and mucosal cross-clade neutralizing antibodies in BALB/c Mice immunized with human immunodeficiency virus type 1 Clade A virus-like particles administered by different routes of inoculation. J Virol 79:7059–7067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buonaguro L, Tagliamonte M, Visciano ML, Andersen H, Lewis M, Pal R, Tornesello ML, Schroeder U, Hinkula J, Wahren B, Buonaguro FM (2012) Immunogenicity of HIV virus-like particles in rhesus macaques by intranasal administration. Clin Vaccine Immunol 19:970–3.

  • Burnie J, Guzzo C (2019) The incorporation of host proteins into the external HIV-1 envelope. Viruses 11:85

    Article  CAS  PubMed Central  Google Scholar 

  • Butler M (2005) Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68:283–291. https://doi.org/10.1007/s00253-005-1980-8

    Article  CAS  PubMed  Google Scholar 

  • Carpentier E, Paris S, Kamen AA, Durocher Y (2007) Limiting factors governing protein expression following polyethylenimine-mediated gene transfer in HEK293-EBNA1 cells. J Biotechnol 128:268–280. https://doi.org/10.1016/j.jbiotec.2006.10.014

    Article  CAS  PubMed  Google Scholar 

  • Cashikar AG, Shim S, Roth R, Maldazys MR, Heuser JE, Hanson PI (2014) Structure of cellular ESCRT-III spirals and their relationship to HIV budding. Elife 3:1–17

  • Cervera L, Gutiérrez-Granados S, Martínez M, Blanco J, Gòdia F, Segura MM (2013) Generation of HIV-1 Gag VLPs by transient transfection of HEK 293 suspension cell cultures using an optimized animal-derived component free medium. J Biotechnol 166:152–165

    Article  CAS  PubMed  Google Scholar 

  • Cervera L, Fuenmayor J, González-Domínguez I, Gutiérrez-Granados S, Segura MM, Gòdia F (2015a) Selection and optimization of transfection enhancer additives for increased virus-like particle production in HEK293 suspension cell cultures. Appl Microbiol Biotechnol 99:9935–9949

    Article  CAS  PubMed  Google Scholar 

  • Cervera L, Gutiérrez-Granados S, Berrow NS, de Las Mercedes Segura M, Gòdia F (2015b) Extended gene expression by medium exchange and repeated transient transfection for recombinant protein production enhancement. Biotechnol Bioeng 112:934–946. https://doi.org/10.1002/bit.25503

    Article  CAS  PubMed  Google Scholar 

  • Cervera L, González-Domínguez I, Segura MM, Gòdia F (2017) Intracellular characterization of Gag VLP production by transient transfection of HEK 293 cells. Biotechnol Bioeng 114:2507–2517. https://doi.org/10.1002/bit.26367

    Article  CAS  PubMed  Google Scholar 

  • Chea LS, Amara RR (2017) Immunogenicity and efficacy of DNA/MVA HIV vaccines in rhesus macaque models. Expert Rev Vaccines 16:973–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Checkley MA, Luttge BG, Freed EO (2011) HIV-1 Envelope glycoprotein biosynthesis, trafficking, and incorporation. J Mol Biol 410:582–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chege GK, Burgers WA, Stutz H, Meyers AE, Chapman R, Kiravu A, Bunjun R, Shephard EG, Jacobs WR, Rybicki EP, Williamson A-L, Williamson A-L (2013) Robust immunity to an auxotrophic Mycobacterium bovis BCG-VLP prime-boost HIV vaccine candidate in a nonhuman primate model. J Virol 87:5151–5160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Lai H (2013) Plant-derived virus-like particles as vaccines. Hum Vaccin Immunother 9:26–49

    Article  CAS  PubMed  Google Scholar 

  • Chung KY, Coyle EM, Jani D, King LR, Bhardwaj R, Fries L, Smith G, Glenn G, Golding H, Khurana S (2015) ISCOMATRIXTM adjuvant promotes epitope spreading and antibody affinity maturation of influenza A H7N9 virus like particle vaccine that correlate with virus neutralization in humans. Vaccine 33:3953–3962

    Article  CAS  PubMed  Google Scholar 

  • Cohn LB, Silva IT, Oliveira TY, Rosales RA, Parrish EH, Learn GH, Hahn BH, Czartoski JL, McElrath MJ, Lehmann C, Klein F, Caskey M, Walker BD, Siliciano JD, Siliciano RF, Jankovic M, Nussenzweig MC (2015) HIV-1 integration landscape during latent and active infection. Cell 160:420–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornelissen M, Heeregrave EJ, Zorgdrager F, Pollakis G, Paxton WA, van der Kuyl AC (2010) Generation of representative primary virus isolates from blood plasma after isolation of HIV-1 with CD44 MicroBeads. Arch Virol 155:2017–2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crooks ET, Tong T, Chakrabarti B, Narayan K, Georgiev IS, Menis S, Huang X, Kulp D, Osawa K, Muranaka J, Stewart-Jones G, Destefano J, O’Dell S, LaBranche C, Robinson JE, Montefiori DC, McKee K, Du SX, Doria-Rose N, Kwong PD, Mascola JR, Zhu P, Schief WR, Wyatt RT, Whalen RG, Binley JM (2015) Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies bind to quaternary epitopes involving glycan-deficient patches proximal to the CD4 binding site. PLoS Pathog 11:e1004932. https://doi.org/10.1371/journal.ppat.1004932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crooks ET, Osawa K, Tong T, Grimley SL, Dai YD, Whalen RG, Kulp DW, Menis S, Schief WR, Binley JM (2017) Effects of partially dismantling the CD4 binding site glycan fence of HIV-1 Envelope glycoprotein trimers on neutralizing antibody induction. Virology 505:193–209

    Article  CAS  PubMed  Google Scholar 

  • Cruz PE, Peixoto CC, Devos K, Moreira JL, Saman E, Carrondo MJT (2000) Characterization and downstream processing of HIV-1 core and virus-like- particles produced in serum free medium. Enzym Microb Technol 26:61–70. https://doi.org/10.1016/S0141-0229(99)00128-3

    Article  CAS  Google Scholar 

  • Dalton AK, Ako-Adjei D, Murray PS, Murray D, Vogt VM (2007) Electrostatic interactions drive membrane association of the human immunodeficiency virus type 1 Gag MA domain. J Virol 81:6434–6445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Rocquigny H, Petitjean P, Tanchou V, Decimo D, Drouot L, Delaunay T, Darlix JL, Roques BP (1997) The zinc fingers of HIV nucleocapsid protein NCp7 direct interactions with the viral regulatory protein Vpr. J Biol Chem 272:30753–30759

    Article  PubMed  Google Scholar 

  • Deml L, Kratochwil G, Osterrieder N, Knüchel R, Wolf H, Wagner R (1997) Increased Incorporation of chimeric human immunodeficiency virus type 1 gp120 proteins into Pr55gagvirus-like particles by an Epstein–Barr virus gp220/350-derived transmembrane domain. Virology 235:10–25

    Article  CAS  PubMed  Google Scholar 

  • Dietmair S, Hodson MP, Quek L-E, Timmins NE, Gray P, Nielsen LK (2012) A multi-omics analysis of recombinant protein production in Hek293 cells. PLoS One 7:e43394. https://doi.org/10.1371/journal.pone.0043394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doan LX, Li M, Chen C, Yao Q (2005) Virus-like particles as HIV-1 vaccines. Rev Med Virol 15:75–88. https://doi.org/10.1002/rmv.449

    Article  PubMed  Google Scholar 

  • El Meshri SE, Boutant E, Mouhand A, Thomas A, Larue V, Richert L, Vivet-Boudou V, Mély Y, Tisné C, Muriaux D, de Rocquigny H (2018) The NC domain of HIV-1 Gag contributes to the interaction of Gag with TSG101. Biochim Biophys Acta, Gen Subj 1862:1421–1431

    Article  CAS  Google Scholar 

  • Elsayed H, Nabi G, McKinstry WJ, Khoo KK, Mak J, Salazar AM, Tenbusch M, Temchura V, Überla K (2018) Intrastructural help: harnessing T helper cells induced by licensed vaccines for improvement of HIV Env Antibody responses to virus-like particle vaccines. Journal of Virology 92(14):e00141–18. https://doi.org/10.1128/JVI.00141-18

  • Esser MT, Graham DR, Coren LV, Trubey CM, Bess JW, Arthur LO, Ott DE, Lifson JD (2001) Differential incorporation of CD45, CD80 (B7-1), CD86 (B7-2), and major histocompatibility complex class I and II molecules into human immunodeficiency virus type 1 virions and microvesicles: implications for viral pathogenesis and immune regulation. J Virol 75:6173–6182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FDA G (2010) Guidance for industry cell substrates and other biological. 1–50. https://doi.org/10.1007/s12206-008-0119-0

  • Fernandes CSM, Barbosa I, Castro R, Pina AS, Coroadinha AS, Barbas A, Roque ACA (2016a) Retroviral particles are effectively purified on an affinity matrix containing peptides selected by phage-display. Biotechnol J 11:1513–1524. https://doi.org/10.1002/biot.201600025

    Article  CAS  PubMed  Google Scholar 

  • Fernandes JD, Faust TB, Strauli NB, Smith C, Crosby DC, Nakamura RL, Hernandez RD, Frankel AD (2016b) Functional segregation of overlapping genes in HIV. Cell 167:1762-1773.e12.

  • Food and Drug Administration (1997) Guideline on sterile drug products produced by aseptic processing. 1–45

  • Fuenmayor J, Cervera L, Gòdia F, Kamen A (2018a) Extended gene expression for Gag VLP production achieved at bioreactor scale. J Chem Technol Biotechnol 94:302–308. https://doi.org/10.1002/jctb.5777

    Article  CAS  Google Scholar 

  • Fuenmayor J, Cervera L, Rigau C, Gòdia F (2018b) Enhancement of HIV-1 VLP production using gene inhibition strategies. Appl Microbiol Biotechnol 102:4477–4487. https://doi.org/10.1007/s00253-018-8930-8

    Article  CAS  PubMed  Google Scholar 

  • Fun A, Wensing AM, Verheyen J, Nijhuis M (2012) Human immunodeficiency virus gag and protease: partners in resistance. Retrovirology 9:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamble TR, Yoo S, Vajdos FF, Von Schwedler UK, Worthylake DK, Wang H, McCutcheon JP, Sundquist WI, Hill CP (1997) Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science. https://doi.org/10.1126/science.278.5339.849

  • Gitlin AD, Shulman Z, Nussenzweig MC (2014) Clonal selection in the germinal centre by regulated proliferation and hypermutation. Nature 509:637–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grgacic EVL, Anderson DA (2006) Virus-like particles: Passport to immune recognition. Methods 40:60–65. https://doi.org/10.1016/j.ymeth.2006.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grover JR, Veatch SL, Ono A (2015) Basic Motifs Target PSGL-1, CD43, and CD44 to Plasma Membrane Sites Where HIV-1 Assembles. J Virol 89:454–467

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez-Granados S, Cervera L, Segura MM, Wölfel J, Gòdia F (2016) Optimized production of HIV-1 virus-like particles by transient transfection in CAP-T cells. Appl Microbiol Biotechnol 100:3935–3947. https://doi.org/10.1007/s00253-015-7213-x

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez-Granados S, Farràs Q, Hein K, Fuenmayor J, Félez P, Segura M, Gòdia F (2017) Production of HIV virus-like particles by transient transfection of CAP-T cells at bioreactor scale avoiding medium replacement. J Biotechnol 263:11–20

    Article  CAS  PubMed  Google Scholar 

  • Hammonds J, Chen X, Zhang X, Lee F, Spearman P (2007) Advances in methods for the production, purification, and characterization of HIV-1 Gag-Env pseudovirion vaccines. Vaccine 25:8036–8048. https://doi.org/10.1016/j.vaccine.2007.09.016

    Article  CAS  PubMed  Google Scholar 

  • Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT Pathway. Dev Cell 21:77–91

    Article  CAS  PubMed  Google Scholar 

  • Henne WM, Stenmark H, Emr SD (2013) Molecular mechanisms of the membrane sculpting ESCRT pathway. Cold Spring Harb Perspect Biol 5:a016766–a016766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurley JH, Hanson PI (2010) Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nat Rev Mol Cell Biol 11:556–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer SS, Gangadhara S, Victor B, Shen X, Chen X, Nabi R, Kasturi SP, Sabula MJ, Labranche CC, Reddy PBJ, Tomaras GD, Montefiori DC, Moss B, Spearman P, Pulendran B, Kozlowski PA, Amara RR (2016) Virus-like particles displaying trimeric simian immunodeficiency virus (SIV) envelope gp160 enhance the breadth of DNA/modified vaccinia virus Ankara SIV vaccine-induced antibody responses in rhesus macaques. J Virol 90:8842–8854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izquierdo-Useros N, Puertas MC, Borràs FE, Blanco J, Martinez-Picado J (2011) Exosomes and retroviruses: the chicken or the egg? Cell Microbiol 13:10–17

    Article  CAS  PubMed  Google Scholar 

  • Joseph SB, Swanstrom R, Kashuba ADM, Cohen MS (2015) Bottlenecks in HIV-1 transmission: insights from the study of founder viruses. Nat Rev Microbiol 13:414–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamdem Toukam D, Tenbusch M, Stang A, Temchura V, Storcksdieck Genannt Bonsmann M, Grewe B, Koch S, Meyerhans A, Nchinda G, Kaptue L, Uberla K (2012) Targeting antibody responses to the membrane proximal external region of the envelope glycoprotein of human immunodeficiency virus. PLoS One 7:e38068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasturi SP, Kozlowski PA, Nakaya HI, Burger MC, Russo P, Pham M, Kovalenkov Y, Silveira EL V., Havenar-Daughton C, Burton SL, Kilgore KM, Johnson MJ, Nabi R, Legere T, Sher ZJ, Chen X, Amara RR, Hunter E, Bosinger SE, Spearman P, Crotty S, Villinger F, Derdeyn CA, Wrammert J, Pulendran B (2017) Adjuvanting a simian immunodeficiency virus vaccine with Toll-like receptor ligands encapsulated in nanoparticles induces persistent antibody responses and enhanced protection in TRIM5α restrictive macaques. Journal of Virology 91(4):e01844–16. https://doi.org/10.1128/JVI.01844-16

  • Kessans SA, Linhart MD, Matoba N, Mor T (2013) Biological and biochemical characterization of HIV-1 Gag/dgp41 virus-like particles expressed in Nicotiana benthamiana. Plant Biotechnol J 11:681–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessans SA, Linhart MD, Meador LR, Kilbourne J, Hogue BG, Fromme P, Matoba N, Mor TS (2016) Immunological Characterization of Plant-Based HIV-1 Gag/Dgp41 Virus-Like Particles. PLoS One 11:e0151842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirnbauer R, Booy F, Cheng N, Lowy DR, Schiller JT (1992) Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci U S A 89:12180–12184. https://doi.org/10.1073/pnas.89.24.12180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klasse PJ (2012) The molecular basis of HIV entry. Cell Microbiol 14:1183–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klug B, Robertson JS, Condit RC, Seligman SJ, Laderoute MP, Sheets R, Williamson AL, Gurwith M, Kochhar S, Chapman L, Carbery B, Mac LM, Chen RT (2016) Adventitious agents and live viral vectored vaccines: Considerations for archiving samples of biological materials for retrospective analysis. Brighton Collaboration Viral Vaccine Vector Safety Working Group. Vaccine. 34(51):6617–6625

  • Korber B, Gaschen B, Yusim K, Thakallapally R, Kesmir C, Detours V (2001) Evolutionary and immunological implications of contemporary HIV-1 variation. Br Med Bull 58:19–42

    Article  CAS  PubMed  Google Scholar 

  • Ku P-I, Bendjennat M, Ballew J, Landesman MB, Saffarian S (2014) ALIX is recruited temporarily into HIV-1 budding sites at the end of Gag assembly. PLoS One 9:e96950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Dou J, Ding L, Spearman P (2007) Myristoylation is required for human immunodeficiency virus type 1 Gag-Gag multimerization in mammalian cells. J Virol 81:12899–12910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Omange RW, Plummer FA, Luo M (2017) A novel HIV vaccine targeting the protease cleavage sites. AIDS Res Ther 14:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linde ME, Colquhoun DR, Ubaida Mohien C, Kole T, Aquino V, Cotter R, Edwards N, Hildreth JEK, Graham DR (2013) The Conserved set of host proteins incorporated into HIV-1 virions suggests a common egress pathway in multiple cell types. J Proteome Res 12:2045–2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd SB, Kent SJ, Winnall WR (2014) The high cost of fidelity. AIDS Res Hum Retrovir 30:8–16. https://doi.org/10.1089/AID.2013.0153

    Article  PubMed  PubMed Central  Google Scholar 

  • Lua LHL, Connors NK, Sainsbury F, Chuan YP, Wibowo N, Middelberg APJ (2014) Bioengineering virus-like particles as vaccines. Biotechnol Bioeng 111:425–440

    Article  CAS  PubMed  Google Scholar 

  • Ludwig C, Wagner R (2007) Virus-like particles-universal molecular toolboxes. Curr Opin Biotechnol 18:537–545

    Article  CAS  PubMed  Google Scholar 

  • Lukic Z, Dharan A, Fricke T, Diaz-Griffero F, Campbell EM (2014) HIV-1 Uncoating is facilitated by dynein and kinesin 1. J Virol 88:13613–13625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luna J, Plata M, Gonzalez M, Correa A, Maldonado I, Nossa C, Radley D, Vuocolo S, Haupt RM, Saah A (2013) Long-term follow-up observation of the safety, immunogenicity, and effectiveness of Gardasil™ in adult women. PLoS One 8. https://doi.org/10.1371/journal.pone.0083431

  • Lynch AG, Tanzer F, Fraser MJ, Shephard EG, Williamson A-L, Rybicki EP (2010) Use of the piggyBac transposon to create HIV-1 gag transgenic insect cell lines for continuous VLP production. BMC Biotechnol 10:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch A, Meyers AE, Williamson AL, Rybicki EP (2012) Stability studies of HIV-1 Pr55gag virus-like particles made in insect cells after storage in various formulation media. Virol J 9:1. https://doi.org/10.1186/1743-422X-9-210

    Article  CAS  Google Scholar 

  • Maranga L, Brazao TF, Carrondo MJT (2003) Virus-like particle production at low multiplicities of infection with the baculovirus insect cell system. Biotechnol Bioeng 84:245–253. https://doi.org/10.1002/bit.10773

    Article  CAS  PubMed  Google Scholar 

  • Marichal-Gallardo PA, Álvarez MM (2012) State-of-the-art in downstream processing of monoclonal antibodies: Process trends in design and validation. Biotechnol Prog 28:899–916. https://doi.org/10.1002/btpr.1567

    Article  CAS  PubMed  Google Scholar 

  • McNally DJ, Darling D, Farzaneh F, Levison PR, Slater NKH (2014) Optimised concentration and purification of retroviruses using membrane chromatography. J Chromatogr A 1340:24–32. https://doi.org/10.1016/j.chroma.2014.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merten O-W, Hebben M, Bovolenta C (2016) Production of lentiviral vectors. Mol Ther Methods Clin Dev 3:16017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers A, Chakauya E, Shephard E, Tanzer FL, Maclean J, Lynch A, Williamson A-L, Rybicki EP (2008) Expression of HIV-1 antigens in plants as potential subunit vaccines. BMC Biotechnol 8:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirambeau G, Lyonnais S, Gorelick RJ (2010) Features, processing states, and heterologous protein interactions in the modulation of the retroviral nucleocapsid protein function. RNA Biol 7:724–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moir S, Chun T-W, Fauci AS (2011) Pathogenic mechanisms of HIV disease. Annu Rev Pathol Mech Dis 6:223–248

    Article  CAS  Google Scholar 

  • Morellet N, Druillennec S, Lenoir C, Bouaziz S, Roques BP (2005) Helical structure determined by NMR of the HIV-1 (345-392)Gag sequence, surrounding p2: Implications for particle assembly and RNA packaging. Protein Sci 14:375–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morenweiser R (2005) Downstream processing of viral vectors and vaccines. Gene Ther 12:S103–S110. https://doi.org/10.1038/sj.gt.3302624

    Article  CAS  PubMed  Google Scholar 

  • Morikawa Y, Hockley DJ, Nermut MV, Jones IM (2000) Roles of matrix, p2, and N-terminal myristoylation in human immunodeficiency virus type 1 Gag assembly. J Virol 74:16–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mou B, Scorza R (2011) Transgenic horticultural crops : challenges and opportunities. Taylor & Francis, Abingdon

    Book  Google Scholar 

  • Nabi G, Genannt Bonsmann MS, Tenbusch M, Gardt O, Barouch DH, Temchura V, Uberla K (2013) GagPol-specific CD4+ T-cells increase the antibody response to Env by intrastructural help. Retrovirology 10:117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negrete A, Pai A, Shiloach J (2014) Use of hollow fiber tangential flow filtration for the recovery and concentration of HIV virus-like particles produced in insect cells. J Virol Methods 195:240–246. https://doi.org/10.1016/j.jviromet.2013.10.017

    Article  CAS  PubMed  Google Scholar 

  • Nestola P, Peixoto C, Silva RRJS, Alves PM, Mota JPB, Carrondo MJT (2015) Improved virus purification processes for vaccines and gene therapy. Biotechnol Bioeng 112:843–857. https://doi.org/10.1002/bit.25545

    Article  CAS  PubMed  Google Scholar 

  • Noad R, Roy P (2003) Virus-like particles as immunogens. Trends Microbiol 11:438–444

    Article  CAS  PubMed  Google Scholar 

  • O’Carroll IP, Soheilian F, Kamata A, Nagashima K, Rein A (2013) Elements in HIV-1 Gag contributing to virus particle assembly. Virus Res 171:341–345

    Article  CAS  PubMed  Google Scholar 

  • O’Neal CM, Crawford SE, Estes MK, Conner ME (1997) Rotavirus virus-like particles administered mucosally induce protective immunity. J Virol 71:8707–8717

    PubMed  PubMed Central  Google Scholar 

  • Ozorowski G, Pallesen J, de Val N, Lyumkis D, Cottrell CA, Torres JL, Copps J, Stanfield RL, Cupo A, Pugach P, Moore JP, Wilson IA, Ward AB (2017) Open and closed structures reveal allostery and pliability in the HIV-1 envelope spike. Nature 547:360–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paavonen J, Naud P, Salmerón J, Wheeler C, Chow S-N, Apter D, Kitchener H, Castellsague X, Teixeira J, Skinner S, Hedrick J, Jaisamrarn U, Limson G, Garland S, Szarewski A, Romanowski B, Aoki F, Schwarz T, Poppe W, Bosch F, Jenkins D, Hardt K, Zahaf T, Descamps D, Struyf F, Lehtinen M, Dubin G, HPV PATRICIA Study Group (2009) Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet 374:301–314

    Article  CAS  PubMed  Google Scholar 

  • Pankrac J, Klein K, McKay PF, King DFL, Bain K, Knapp J, Biru T, Wijewardhana CN, Pawa R, Canaday DH, Gao Y, Fidler S, Shattock RJ, Arts EJ, Mann JFS (2018) A heterogeneous human immunodeficiency virus-like particle (VLP) formulation produced by a novel vector system. NPJ Vaccines 3:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peel S, Macheboeuf P, Martinelli N, Weissenhorn W (2011) Divergent pathways lead to ESCRT-III-catalyzed membrane fission. Trends Biochem Sci 36:199–210

    Article  CAS  PubMed  Google Scholar 

  • Pettit SC, Moody MD, Wehbie RS, Kaplan AH, Nantermet PV, Klein CA, Swanstrom R (1994) The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectious virions. J Virol 68:8017–8027

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pillay S, Meyers A, Williamson A-L, Rybicki EP (2009) Optimization of chimeric HIV-1 virus-like particle production in a baculovirus-insect cell expression system. Biotechnol Prog 25:1153–1160

    Article  CAS  PubMed  Google Scholar 

  • Popov S, Popova E, Inoue M, Gottlinger HG (2008) Human immunodeficiency virus type 1 Gag engages the Bro1 domain of ALIX/AIP1 through the nucleocapsid. J Virol 82:1389–1398

    Article  CAS  PubMed  Google Scholar 

  • Popov S, Popova E, Inoue M, Göttlinger HG (2009) Divergent Bro1 domains share the capacity to bind human immunodeficiency virus type 1 nucleocapsid and to enhance virus-like particle production. J Virol 83:7185–7193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poteet E, Lewis P, Chen C, Ho SO, Do T, Chiang S, Labranche C, Montefiori D, Fujii G, Yao Q (2016) Toll-like receptor 3 adjuvant in combination with virus-like particles elicit a humoral response against HIV. Vaccine 34:5886–5894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rainone V, Dubois G, Temchura V, Überla K, Clivio A, Nebuloni M, Lauri E, Trabattoni D, Veas F, Clerici M (2011) CCL28 Induces mucosal homing of HIV-1-specific IgA-secreting plasma cells in mice immunized with HIV-1 virus-like particles. PLoS One 6:e26979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R, Premsri N, Namwat C, de Souza M, Adams E, Benenson M, Gurunathan S, Tartaglia J, McNeil JG, Francis DP, Stablein D, Birx DL, Chunsuttiwat S, Khamboonruang C, Thongcharoen P, Robb ML, Michael NL, Kunasol P, Kim JH (2009) Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 361:2209–2220

    Article  CAS  PubMed  Google Scholar 

  • Robinson BA, Reed JC, Geary CD, Swain JV, Lingappa JR (2014) A temporospatial Map that defines specific steps at which critical surfaces in the Gag MA and CA domains act during immature HIV-1 capsid assembly in cells. J Virol 88:5718–5741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roldao A, Mellado MC, Castilho LR, Carrondo MJ, Alves PM (2010) Virus-like particles in vaccine development. Expert Rev Vaccines 9:1149–1176. https://doi.org/10.1586/erv.10.115

    Article  CAS  PubMed  Google Scholar 

  • Ross TM, Pereira LE, Luckay A, McNicholl JM, García-Lerma JG, Heneine W, Eugene HS, Pierce-Paul BR, Zhang J, Hendry RM, Smith JM (2014) A polyvalent clade B virus-like particle HIV vaccine combined with partially protective oral preexposure prophylaxis prevents simian-human immunodeficiency virus Infection in macaques and primes for virus-amplified immunity. AIDS Res Hum Retrovir 30:1072–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy P, Noad R (2008) Virus-like particles as a vaccine delivery system: myths and facts. Hum Vaccin 4:5–12

    Article  CAS  PubMed  Google Scholar 

  • Sakuragi S, Goto T, Sano K, Morikawa Y (2002) HIV type 1 Gag virus-like particle budding from spheroplasts of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 99:7956–7961. https://doi.org/10.1073/pnas.082281199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scarlata S, Ehrlich LS, Carter CA (1998) Membrane-induced alterations in HIV-1 Gag and matrix protein-protein interactions. J Mol Biol 277:161–169

    Article  CAS  PubMed  Google Scholar 

  • Schiedner G, Hertel S, Bialek C, Kewes H, Waschütza G, Volpers C (2008) Efficient and reproducible generation of high-expressing, stable human cell lines without need for antibiotic selection. BMC Biotechnol 8:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scotti N, Alagna F, Ferraiolo E, Formisano G, Sannino L, Buonaguro L, De Stradis A, Vitale A, Monti L, Grillo S, Buonaguro FM, Cardi T (2009) High-level expression of the HIV-1 Pr55gag polyprotein in transgenic tobacco chloroplasts. Planta 229:1109–1122

    Article  CAS  PubMed  Google Scholar 

  • Serrao E, Krishnan L, Shun M-C, Li X, Cherepanov P, Engelman A, Maertens GN (2014) Integrase residues that determine nucleotide preferences at sites of HIV-1 integration: implications for the mechanism of target DNA binding. Nucleic Acids Res 42:5164–5176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simek MD, Rida W, Priddy FH, Pung P, Carrow E, Laufer DS, Lehrman JK, Boaz M, Tarragona-Fiol T, Miiro G, Birungi J, Pozniak A, McPhee DA, Manigart O, Karita E, Inwoley A, Jaoko W, DeHovitz J, Bekker L-G, Pitisuttithum P, Paris R, Walker LM, Poignard P, Wrin T, Fast PE, Burton DR, Koff WC (2009) Human immunodeficiency virus type 1 elite neutralizers: individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm. J Virol 83:7337–7348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slütter B, Jiskoot W (2016) Sizing the optimal dimensions of a vaccine delivery system: a particulate matter. Expert Opin Drug Deliv 13:167–170

    Article  CAS  PubMed  Google Scholar 

  • Steppert P, Burgstaller D, Klausberger M, Berger E, Aguilar PP, Schneider TA, Kramberger P, Tover A, Nöbauer K, Razzazi-Fazeli E, Jungbauer A (2016) Purification of HIV-1 gag virus-like particles and separation of other extracellular particles. J Chromatogr A 1455:93–101. https://doi.org/10.1016/j.chroma.2016.05.053

    Article  CAS  PubMed  Google Scholar 

  • Steppert P, Burgstaller D, Klausberger M, Kramberger P, Tover A, Berger E, Nöbauer K, Razzazi-Fazeli E, Jungbauer A (2017) Separation of HIV-1 gag virus-like particles from vesicular particles impurities by hydroxyl-functionalized monoliths. J Sep Sci 40:979–990. https://doi.org/10.1002/jssc.201600765

    Article  CAS  PubMed  Google Scholar 

  • Strack B, Calistri A, Craig S, Popova E, Göttlinger HG (2003) AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114:689–699

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Zhang H, Xu S, Shi L, Dong J, Gao D, Chen Y, Feng H (2017) Membrane-anchored CCL20 augments HIV Env-specific mucosal immune responses. Virol J 14:163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundquist WI, Krausslich H-G (2012) HIV-1 Assembly, budding, and maturation. Cold Spring Harb Perspect Med 2:a006924–a006924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tagliamonte M, Visciano ML, Tornesello ML, De Stradis A, Buonaguro FM, Buonaguro L (2010) Constitutive expression of HIV-VLPs in stably transfected insect cell line for efficient delivery system. Vaccine 28:6417–6424

    Article  CAS  PubMed  Google Scholar 

  • Tagliamonte M, Visciano ML, Tornesello ML, De Stradis A, Buonaguro FM, Buonaguro L (2011) HIV-Gag VLPs presenting trimeric HIV-1 gp140 spikes constitutively expressed in stable double transfected insect cell line. Vaccine 29:4913–4922. https://doi.org/10.1016/j.vaccine.2011.05.004

    Article  CAS  PubMed  Google Scholar 

  • Tong T, Crooks ET, Osawa K, Robinson JE, Barnes M, Apetrei C, Binley JM (2014) Multi-parameter exploration of HIV-1 virus-like particles as neutralizing antibody immunogens in guinea pigs, rabbits and macaques. Virology 456–457:55–69

    Article  CAS  PubMed  Google Scholar 

  • Tsunetsugu-Yokota Y, Morikawa Y, Isogai M, Kawana-Tachikawa A, Odawara T, Nakamura T, Grassi F, Autran B, Iwamoto A (2003) Yeast-derived human immunodeficiency virus type 1 p55(gag) virus-like particles activate dendritic cells (DCs) and induce perforin expression in Gag-specific CD8(+) T cells by cross-presentation of DCs. J Virol 77:10250–10259. https://doi.org/10.1128/JVI.77.19.10250-10259.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venereo-Sanchez A, Gilbert R, Simoneau M, Caron A, Chahal P, Chen W, Ansorge S, Li X, Henry O, Kamen A (2016) Hemagglutinin and neuraminidase containing virus-like particles produced in HEK-293 suspension culture: an effective influenza vaccine candidate. Vaccine 34:3371–3380. https://doi.org/10.1016/j.vaccine.2016.04.089

    Article  CAS  PubMed  Google Scholar 

  • Venereo-Sanchez A, Simoneau M, Lanthier S, Chahal P, Bourget L, Ansorge S, Gilbert R, Henry O, Kamen A (2017) Process intensification for high yield production of influenza H1N1 Gag virus-like particles using an inducible HEK-293 stable cell line. Vaccine 35:4220–4228. https://doi.org/10.1016/j.vaccine.2017.06.024

    Article  CAS  PubMed  Google Scholar 

  • Venters C, Graham W, Cassidy W (2004) Recombivax-HB: perspectives past, present and future. Expert Rev Vaccines 3:119–129

    Article  CAS  PubMed  Google Scholar 

  • Vetter BN, Orlowski V, Fransen K, Niederhauser C, Aubert V, Brandenberger M, Ciardo D, Dollenmaier GN, Klimkait T, Regenass S, Schmid P, Schottstedt V, Suter-Riniker F, Yerly S, Shah C, Böni J, Schüpbach JR (2014) Generation of a recombinant Gag virus-like-particle panel for the evaluation of p24 antigen detection by diagnostic HIV tests. PLoS One 9. https://doi.org/10.1371/journal.pone.0111552

  • Vicente T, Mota JPB, Peixoto C, Alves PM, Carrondo MJT (2011a) Rational design and optimization of downstream processes of virus particles for biopharmaceutical applications: Current advances. Biotechnol Adv 29:869–878. https://doi.org/10.1016/j.biotechadv.2011.07.004

    Article  CAS  PubMed  Google Scholar 

  • Vicente T, Roldão A, Peixoto C, Carrondo MJT, Alves PM (2011b) Large-scale production and purification of VLP-based vaccines. J Invertebr Pathol 107:S42–S48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidigal J, Fernandes B, Dias MM, Patrone M, Roldão A, Carrondo MJT, Alves PM, Teixeira AP (2018) RMCE-based insect cell platform to produce membrane proteins captured on HIV-1 Gag virus-like particles. Appl Microbiol Biotechnol 102:655–666

    Article  CAS  PubMed  Google Scholar 

  • von Schwedler UK, Stray KM, Garrus JE, Sundquist WI (2003) Functional surfaces of the human immunodeficiency virus type 1 capsid protein. J Virol 77:5439–5450

    Article  CAS  Google Scholar 

  • Vzorov AN, Wang L, Chen J, Wang B-Z, Compans RW (2016) Effects of modification of the HIV-1 Env cytoplasmic tail on immunogenicity of VLP vaccines. Virology 489:141–150

    Article  CAS  PubMed  Google Scholar 

  • Wang B-Z, Liu W, Kang S-M, Alam M, Huang C, Ye L, Sun Y, Li Y, Kothe DL, Pushko P, Dokland T, Haynes BF, Smith G, Hahn BH, Compans RW (2007) Incorporation of High Levels of Chimeric Human Immunodeficiency Virus Envelope Glycoproteins into Virus-Like Particles. J Virol 81:10869–10878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weissenhorn W, Poudevigne E, Effantin G, Bassereau P (2013) How to get out: ssRNA enveloped viruses and membrane fission. Curr Opin Virol 3:159–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wölfel J, Essers R, Bialek C, Hertel S, Scholz-Neumann N, Schiedner G (2011) CAP-T cell expression system: a novel rapid and versatile human cell expression system for fast and high yield transient protein expression. BMC Proc 5(Suppl 8):P133

    Article  PubMed  PubMed Central  Google Scholar 

  • Wollert T, Hurley JH (2010) Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464:864–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Song Y, Li X, Huang X, Liu J, Ding H, Zhu P, Zhou P (2012) HIV-1 Virus-Like Particles Produced by Stably Transfected Drosophila S2 Cells: a Desirable Vaccine Component. J Virol 86:7662–7676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye L, Wen Z, Dong K, Wang X, Bu Z, Zhang H, Compans RW, Yang C (2011) Induction of HIV neutralizing antibodies against the MPER of the HIV envelope protein by HA/gp41 chimeric protein-based DNA and VLP vaccines. PLoS One 6:e14813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeltins A (2013) Construction and characterization of virus-like particles: a review. Mol Biotechnol 53:92–107. https://doi.org/10.1007/s12033-012-9598-4

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Xia H, Cleghorn G, Gobe G, West M, Wei M (2001) A highly efficient and consistent method for harvesting large volumes of high-titre lentiviral vectors. Gene Ther 8:1745–1751. https://doi.org/10.1038/sj.gt.3301587

    Article  CAS  PubMed  Google Scholar 

  • Zhu J (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 30:1158–1170. https://doi.org/10.1016/j.biotechadv.2011.08.022

    Article  CAS  PubMed  Google Scholar 

  • Zuniga R, Lucchetti A, Galvan P, Sanchez S, Sanchez C, Hernandez A, Sanchez H, Frahm N, Linde CH, Hewitt HS, Hildebrand W, Altfeld M, Allen TM, Walker BD, Korber BT, Leitner T, Sanchez J, Brander C (2006) Relative Dominance of Gag p24-Specific Cytotoxic T Lymphocytes Is Associated with Human Immunodeficiency Virus Control. J Virol 80:3122–3125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Work at IrsiCaixa is supported by grants PI17/01518 (to JB) and PI18/01332 (to JC) from the Fondo de Investigaciones Sanitarias (FIS, Instituto de Salud Carlos III, ISCIII), RIS-RETIC grant RD16/0025/0041, cofunded by ISCIII and FEDER (EU) and the Indivac project sponsored by GRIFOLS. IrsiCaixa and IGTP are part of the CERCA Programme/Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Cervera.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cervera, L., Gòdia, F., Tarrés-Freixas, F. et al. Production of HIV-1-based virus-like particles for vaccination: achievements and limits. Appl Microbiol Biotechnol 103, 7367–7384 (2019). https://doi.org/10.1007/s00253-019-10038-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10038-3

Keywords

Navigation