Skip to main content

Advertisement

Log in

Biochemical and proteomic characterization of the extracellular enzymatic preparate of Exiguobacterium undae, suitable for efficient animal glue removal

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, we describe the preparation and characterization of a biopreparate for efficient and rapid animal glue removal. The biopreparate is based on the extracellular proteolytic enzymes of an Exiguobacterium undae environmental isolate. Liquid chromatography-mass spectrometry analysis showed that the biopreparate is predominantly composed of hydrolytic enzymes—proteases and peptidases, nucleases, peptide ABC transporter substrate-binding proteins, and a phosphatase. The two main proteins present are bacillolysin and a peptide ABC transporter substrate-binding protein. Inhibition and proteomic analyses of the biopreparate revealed that bacillolysin, a neutral metalloendopeptidase, is mainly responsible for its proteolytic activity. This biopreparate was able to satisfactorily remove two types of animal glue from different kinds of material surfaces. These results suggest that this biopreparate could serve as a potential new tool for the restoration of historical objects rather than living microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed HE, Kolisis FN (2012) A study on using of protease for removal of animal glue adhesive in textile conservation. J Appl Polym Sci 124:3565–3576

    Article  CAS  Google Scholar 

  • Barbabietola N, Tasso F, Alisi C, Marconi P, Perito B, Pasquariello G, Sprocati AR (2016) A safe microbe-based procedure for a gentle removal of aged animal glues from ancient paper. Int Biodeterior Biodegrad 109:53–60

    Article  CAS  Google Scholar 

  • Baú D, Martin AJM, Mooney C, Vullo A, Walsh I, Pollastri G (2006) Distill: a suite of web servers for the prediction of one-, two- and three-dimensional structural features of proteins. BMC Bioinformatics 7:402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bosch-Roig P, Ranalli G (2014) The safety of biocleaning technologies for cultural heritage. Front Microbiol 5:155

    Article  PubMed  PubMed Central  Google Scholar 

  • Bozec L, van der Heijden G, Horton M (2007) Collagen fibrils: nanoscale ropes. Biophys J 92:70–75

    Article  PubMed  CAS  Google Scholar 

  • Buehler MJ (2006) Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc Natl Acad Sci U S A 103:12285–12290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen S, Hong Y, Shao Z, Liu Z (2010) A cold-active β-glucosidase (Bgl1C) from a sea bacteria Exiguobacterium oxidotolerans A011. World J Microbiol Biotechnol 26:1427–1435

    Article  CAS  Google Scholar 

  • Colaert N, Helsens K, Martens L, Vandekerckhove J, Gevaert K (2009) Improved visualization of protein consensus sequences by iceLogo. Nat Methods 6:786–787

    Article  PubMed  CAS  Google Scholar 

  • Collins MD, Lund BM, Farrow JAE, Schleifer KH (1983) Chemotaxonomic study of an alkalophilic bacterium, Exiguobacterium aurantiacum gen. nov., sp. nov. Microbiology 129:2037–2042

    Article  CAS  Google Scholar 

  • Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  PubMed  CAS  Google Scholar 

  • Drozdetskiy A, Cole C, Procter J, Barton GJ (2015) JPred4: a protein secondary structure prediction server. Nucleic Acids Res 43:W389–W394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dürrschmidt P, Mansfeld J, Ulbrich-Hofmann R (2010) Refolding of the non-specific neutral protease from Bacillus stearothermophilus proceeds via an autoproteolytically sensitive intermediate. Biophys Chem 147:66–73

    Article  PubMed  CAS  Google Scholar 

  • Fahimirad S, Abtahi H, Razavi SH, Alizadeh H, Ghorbanpour M (2017) Production of recombinant antimicrobial polymeric protein Beta casein-E 50-52 and its antimicrobial synergistic effects assessment with thymol. Molecules 22:E822

    Article  PubMed  CAS  Google Scholar 

  • Frigerio F, Margarit I, Nogarotto R, de Filippis V, Grandi G (1996) Cumulative stabilizing effects of hydrophobic interactions on the surface of the neutral protease from Bacillus subtilis. Protein Eng 9:439–445

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Wang J, Yu D-Q, Bian F, Xie B-B, Chen X-L, Zhou B-CH, Lai L-H, Wang Z-X, Wu J-W, Zhan Y-Z (2010) Structural basis for the autoprocessing of zinc metalloproteases in the thermolysin family. PNAS 12:17569–17574

    Article  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. (In) J M. Walker (ed): The proteomics protocols handbook, Humana Press, pp. 571–607

  • Harada J, Takaku S, Watanabe K (2012) An on-demand metalloprotease from psychro-tolerant Exiguobacterium undae Su-1, the activity and stability of which are controlled by the Ca2+ concentration. Biosci Biotechnol Biochem 76:986–992

    Article  PubMed  CAS  Google Scholar 

  • Harrison SM, Kaml I, Prokoratova V, Mazanek M, Kenndler E (2005) Animal glues in mixtures of natural binding media used in artistic and historic objects: identification by capillary zone electrophoresis. Anal Bioanal Chem 382:1520–1526

    Article  PubMed  CAS  Google Scholar 

  • Harth L, Krah U, Linke D, Dunkel A, Hofmann T, Berger RG (2016) Salt taste enhancing l-arginyl dipeptides from casein and lysozyme released by peptidases of Basidiomycota. J Agric Food Chem https://doi.org/10.1021/acs.jafc.6b02716, in press

  • Hatta E, Matsumoto K, Honda Y (2015) Bacillolysin, papain, and subtilisin improve the quality of gluten-free rice bread. J Cereal Sci 61:41–47

    Article  CAS  Google Scholar 

  • Iglesias MS, Sequeiros C, García S, Olivera NL (2017) Newly isolated Bacillus sp. G51 from Patagonian wool produces an enzyme combination suitable for felt-resist treatments of organic wool. Bioprocess Biosyst Eng 40:833–842

    Article  PubMed  CAS  Google Scholar 

  • Kasana RC, Pandey CB (2017) Exiguobacterium: an overview of a versatile genus with potential in industry and agriculture. Crit Rev Biotechnol in press 38:141–156. https://doi.org/10.1080/07388551.2017.1312273

    Article  PubMed  CAS  Google Scholar 

  • Kielty CM, Sherratt MJ, Shuttleworth CA (2002) Elastic fibres. J Cell Sci 115:2817–2828

    PubMed  CAS  Google Scholar 

  • Kreij A, Venema G, van den Burg B (2000) Substrate specificity in the highly heterogeneous M4 peptidase family is determined by a small subset of amino acids. J Biol Chem 275:31115–31120

    Article  PubMed  Google Scholar 

  • Lu Y, McMahon DJ, Vollmer AH (2017) Investigating rennet coagulation properties of recombined highly concentrated micellar casein concentrate and cream for use in cheese making. J Dairy Sci 100:892–900

    Article  PubMed  CAS  Google Scholar 

  • Lustrato G, Alfano G, Andreotti A, Colombini MP, Ranalli G (2012) Fast biocleaning of mediaeval frescoes using viable bacterial cells. Int Biodeterior Biodegrad 69:51–61

    Article  CAS  Google Scholar 

  • Michalski A, Damoc E, Lange O, Denisov E, Nolting D, Müller M, Viner R, Schwartz J, Remes P, Belford M, Dunyach JJ, Cox J, Horning S, Mann M, Makarov A (2012) Ultra high resolution linear ion trap Orbitrap mass spectrometer (Orbitrap Elite) facilitates top down LC MS/MS and versatile peptide fragmentation modes. Mol Cell Proteomics 11:O111.013698

    Article  PubMed  CAS  Google Scholar 

  • Pangallo D, Chovanová K, Drahovska H, De Leo F, Urzì C (2009) Application of fluorescence internal transcribed spacer-PCR (f-ITS) for the cluster analysis of bacteria isolated from air and deteriorated fresco surfaces. Int Biodeterior Biodegrad 63:868–872

    Article  CAS  Google Scholar 

  • Pangallo D, Kraková L, Chovanová K, Šimonovičová A, De Leo F, Urzì C (2012) Analysis and comparison of the microflora isolated from fresco surface and from surrounding air environment through molecular and biodegradative assays. World J Microbiol Biotechnol 28:2015–2027

    Article  PubMed  CAS  Google Scholar 

  • Pangallo D, Bučková M, Kraková L, Puškárová A, Šaková N, Grivalský T, Chovanová K, Zemánková M (2015) Biodeterioration of epoxy resin: a microbial survey through culture-independent and culture-dependent approaches. Environ Microbiol 17:462–479

    Article  PubMed  CAS  Google Scholar 

  • Park GS, Hong SJ, Jung BK, Khan AR, Park YJ, Park CE, Lee A, Kwak Y, Lee YJ, Lee DW, Lee C, Park CK, Shin JH (2015) Complete genome sequence of a keratin-degrading bacterium Chryseobacterium gallinarum strain DSM 27622(T) isolated from chicken. J Biotechnol 211:66–67

    Article  PubMed  CAS  Google Scholar 

  • Rajaei S, Heidari R, Shahbani Zahiri H, Sharifzadeh S, Torktaz I, Akbari Noghabi K (2014) A novel cold-adapted pullulanase from Exiguobacterium sp. SH3: production optimization, purification, and characterization. Starke 66:225–234

    Article  CAS  Google Scholar 

  • Ranalli G, Alfano G, Belli C, Lustrato G, Colombini MP, Bonaduce I, Zanardini E, Abbruscato P, Cappitelli F, Sorlini C (2005) Biotechnology applied to cultural heritage: biorestoration of frescoes using viable bacterial cells and enzymes. J Appl Microbiol 98:73–83

    Article  PubMed  CAS  Google Scholar 

  • Ruf A, Stihle M, Benz J, Schmidt M, Sobek H (2013) Structure of gentlyase, the neutral metalloprotease of Paenibacillus polymyxa. Acta Crystallogr D 69:24–31

    Article  PubMed  CAS  Google Scholar 

  • Sarmiento A, Pérez-Alonso M, Olivares M, Castro K, Martínez-Arkarazo I, Fernández LA, Madariaga JM (2011) Classification and identification of organic binding media in artworks by means of Fourier-transform infrared spectroscopy and principal component analysis. Anal Bioanal Chem 399:3601–3611

    Article  PubMed  CAS  Google Scholar 

  • Schellmann NC (2007) Animal glues: a review of their key properties relevant to conservation. Stud Conserv 52:55–66

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Selim S, Hassan S, Hagagy N, Kraková L, Grivalský T, Pangallo D (2017) Assessment of microbial diversity in Saudi springs by culture-dependent and culture-independent methods. Geomicrobiol J 34:443–453

    Google Scholar 

  • Sivakumar N, Raveendran S (2015) Keratin degradation by bacteria and fungi isolated from a poultry farm and plumage. Br Poult Sci 56:210–217

    Article  PubMed  CAS  Google Scholar 

  • Stark W, Pauptit RA, Wilson KS, Jansonius JN (1992) The structure of neutral protease from Bacillus cereus at 0.2-nm resolution. Eur J Biochem 207:781–791

    Article  PubMed  CAS  Google Scholar 

  • Vijayalaxmi S, Appaiah KA, Jayalakshmi SK, Mulimani VH, Sreeramulu K (2013) Production of bioethanol from fermented sugars of sugarcane bagasse produced by lignocellulolytic enzymes of Exiguobacterium sp. VSG-1. Appl Biochem Biotechnol 171:246–260

    Article  PubMed  CAS  Google Scholar 

  • Vishnivetskaya TA, Kathariou S, Tiedje JM (2009) The Exiguobacterium genus: biodiversity and biogeography. Extremophiles 13:541–555

    Article  PubMed  Google Scholar 

  • Wang B (2016) Keratin: structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog Mater Sci 76:229–318

    Article  CAS  Google Scholar 

  • Ward GWR (2008) Materials and techniques in art. Oxford University Press, Editor: Ward GWR

  • Wei S, Schreiner M, Rosenberg E, Guo H, Ma Q (2011) Identification of the binding media in Tang Dynasty Chinese wall paintings by using Py-GC/MS and GC/MS techniques. Int J Conserv Sci 2:77–88

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Zdenek Voburka (Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences, Prague, Czech Republic) for N-terminal sequencing and Dr. Jacob A. Bauer for discussion and manuscript revision.

Funding

The work was financially supported by the grant APVV-15-0528 “Modified polymers from renewable resources and their degradation.” This contribution is also the result of the project ITMS-26240220010 in the frame of the support program Research and Development of the European Regional Development Fund. A Slovak patent application form, No. PP50012-2018, has been applied for the E. undae biopreparate.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vladena Bauerová-Hlinková or Domenico Pangallo.

Ethics declarations

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 1218 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeszeová, L., Bauerová-Hlinková, V., Baráth, P. et al. Biochemical and proteomic characterization of the extracellular enzymatic preparate of Exiguobacterium undae, suitable for efficient animal glue removal. Appl Microbiol Biotechnol 102, 6525–6536 (2018). https://doi.org/10.1007/s00253-018-9105-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9105-3

Keywords

Navigation