Skip to main content

Advertisement

Log in

Naturally occurring aromatic steroids and their biological activities

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The present review describes the distribution and biological activities of natural mono-, di-, and triaromatic steroids. It is shown that the producers of aromatic steroids are microorganisms, fungi, and marine invertebrates, and also they were found in plants, animals, marine sediments, and karst deposits. Eighty biologically active aromatic steroids likely have an anti-tumor, anti-inflammatory, and neuroprotection activity with a confidence of 78 to 92%. The structures and predicted biological activities of aromatic steroids are available. This review emphasizes the role of aromatic steroids as an important source and potential leads for drug discovery and they are of great interest to chemists, physicians, biologists, pharmacologists, and the pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Araújo Júnior RF, Oliveira AL, Pessoa JB, Garcia VB, Guerra GC, Soares LA, Souza TP, Petrovick PR, Araújo AA (2013) Maytenus ilicifolia dry extract protects normal cells, induces apoptosis and regulates Bcl-2 in human cancer cells. Exp Biol Med (Maywood) 238(11):1251–1258

    Article  CAS  Google Scholar 

  • Bachmann WE, Cole W, Wilds AL (1939) The total synthesis of the sex hormone equilenin. J Am Chem Soc 61(4):974–975

    Article  CAS  Google Scholar 

  • Barbanti SM, Moldowan JM, Watt DS, Kolaczkowska E (2011) New aromatic steroids distinguish Paleozoic from Mesozoic oil. Org Geochem 42:409–424

    Article  CAS  Google Scholar 

  • Barrero AF, Oltra JE, Poyatos JA, Jiménez D, Oliver E (1998) Phycomysterols and other sterols from the fungus Phycomyces blakesleeanus. J Nat Prod 61(12):1491–1496

    Article  PubMed  CAS  Google Scholar 

  • Beall D (1936) Some notes on the isolation of oestrone and equilin from the urine of pregnant mares. Biochem J 30(4):577–581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brassell SC, Eglinton G, Maxwell JR (1983) The geochemistry of terpenoids and steroids. Biochem Soc Trans 11(5):575–586

  • Breger IA (1966) Geochemistry of lipids. J Am Oil Chem Soc 43:197–221

    Article  CAS  Google Scholar 

  • Butenandt A (1929) Über “Progynon” ein krystallisiertes weibliches Sexualhormon. Die Naturwissenschaften 17(45):879–879

    Article  CAS  Google Scholar 

  • Butenandt A (1930) Über physikalische und chemische Eigenschaften des krystallisierten Follikelhormons. Untersuchungen über das weibliche Sexualhormon. Hoppe-Seyler’s Zeit. Physiol Chem 191:140–156

    Article  CAS  Google Scholar 

  • Butenandt A (1931) Über die chemische Untersuchung der Sexualhormone. Zeit Angew Chem 44(46):905–908

    Article  CAS  Google Scholar 

  • Butenandt A, Jacobi H (1933) Über die Darstellung eines krystallisierten pflanzlichen Tokokinins (Thelykinins) und seine Identifizierung mit dem α-Follikelhormon. Untersuchungen über das weibliche Sexualhormon. Hoppe Seyler’s Z Physiol Chem 218:104–112

    Article  CAS  Google Scholar 

  • Cain JC (1960) Miroestrol—an estrogen from the plant Pueraria mirifica. Nature 188(4753):774–777

    Article  PubMed  CAS  Google Scholar 

  • Cheng B, Zhao J, Yang C, Tian Y, Liao Z (2017) Geochemical evolution of occluded hydrocarbons inside geomacromolecules: a review. Energy Fuel 31:8823−8832

    Google Scholar 

  • Cirigliano AM, Veleiro AS, Misico RI, Tettamanzi MC, Oberti JC, Burton G (2007) Withanolides from Jaborosa laciniata. J Nat Prod 70:1644–1646

    Article  PubMed  CAS  Google Scholar 

  • Crews P, Harrison B (2000) New triterpene-ketides (Merotriterpenes), haliclotriol A and B, from an Indo–Pacific Haliclona sponge. Tetrahedron 56(46):9039–9046

    Article  CAS  Google Scholar 

  • Dembitsky VM, Gloriozova TA, Poroikov VV (2015) Naturally occurring plant isoquinoline N-oxide alkaloids: their pharmacological and SAR activities. Phytomedicine 22:183–202

    Article  PubMed  CAS  Google Scholar 

  • Dembitsky VM, Gloriozova TA, Poroikov VV (2017) Natural steroids containing a tertiary butyl group and their biological activities. Eur J Biomed Pharm Sci 4(11):32–58

    Google Scholar 

  • Dembitsky VM, Gloriozova TA, Poroikov VV (2017a) Biological activities of nitro steroids. J Pharm Res Int 18:1–19. https://doi.org/10.9734/JPRI/2017/36196

    Article  Google Scholar 

  • Dembitsky VM, Gloriozova TA, Poroikov VV (2017b) Pharmacological activities of epithio steroids. J Pharm Res Int 18:1–19. https://doi.org/10.9734/JPRI/2017/36199

    Article  Google Scholar 

  • Di Girolamo JA, Li X-C, Jacob MR, Clark AM, Ferreira D (2009) Reversal of fluconazole resistance by sulfated sterols from the marine sponge Topsentia sp. J Nat Prod 72(8):1524–1528

    Article  CAS  Google Scholar 

  • Dohrn M, Faure W, Poll H, Blotevogel W (1926) Tokokinine, Stoff mit sexualhormonartiger Wirkung aus Pflanzenzellen. Med Klin 22:1417–1419

    Google Scholar 

  • Doisy EA, Clement DV, Sidney T (1929) Folliculin from urine of pregnant women. Am J Phys 90:329–330

    Google Scholar 

  • Druzhilovskiy DS, Rudik AV, Filimonov DA, Gloriozova TA, Lagunin AA, Dmitriev AV, Pogodin PV, Dubovskaya VI, Ivanov SM, Tarasova OA, Bezhentsev VM, Murtazalieva KA, Semin MI, Maiorov IS, Gaur AS, Sastry GN, Poroikov VV (2017) Computational platform Way2Drug: from the prediction of biological activity to drug repurposing. Rus Chem Bull, Int Ed 66(10):1832–1841

    Article  CAS  Google Scholar 

  • Edgar A, Doisy EA (1923) An ovarian hormone: preliminary report on its localization, extraction and partial purification, and action in test animals. J Am Med Assoc 81:819–821

    Article  Google Scholar 

  • Falk H, Wolkenstein K (2017) Natural product molecular fossils. In: Kinghorn A, Falk H, Gibbons S, Kobayashi J (Eds) 104. Progress in the Chemistry of Organic Natural Products, vol 104. Springer, Cham

  • Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskiy DS, Pogodin PV, Poroikov VV (2014) Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem Heterocycl Compnds 50(3):444–457

    Article  CAS  Google Scholar 

  • Fluhmann CF (1938) Estrogenic hormones: their clinical usage. Cal West Med 49(5):362–366

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fritz MA, Speroff L (2012) Clinical gynecologic endocrinology and infertility. Lippincott Williams & Wilkins, pp. 751

  • Gao S, Wang Q, Huang LJS, Lum L, Chen C (2010) Chemical and biological studies of nakiterpiosin and nakiterpiosinone. J Am Chem Soc 132(1):371–383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gawande DY, Druzhilovskiy D, Gupta RC, Poroikov V, Goel RK (2017) Anticonvulsant activity and acute neurotoxic profile of Achyranthes aspera Linn. J Ethnopharmacol 202(18):97–102

    Article  PubMed  Google Scholar 

  • Goel RK, Gawande DY, Lagunin AA, Poroikov V (2018) Pharmacological repositioning of Achyranthes aspera as antidepressant using pharmacoinformatic tools PASS and PharmaExpert: a case study with wet lab validation. SAR & QSAR Environ Res 29(1):69–81

    Article  CAS  Google Scholar 

  • Goncalves MIA, Martins DTO (1998) Plantas medicinais usadas pela populacao do municipio de Santo Antonio de Leverger, Mato Grosso, Brasil. Revista Brasileira de Farmacia 79:56–61

    Google Scholar 

  • Gupta RR, Jain M (2000) Aliphatic and aromatic hydrocarbons, steroids, carbohydrates. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Himeno E, Nagao T, Honda J, Okabe H, Irino N, Nakasumi T (1992) Structures of cayaponosides A, B, C and D, glucosides of new nor-cucurbitacins in the roots of Cayaponia tayuya. Chem Pharm Bull (Tokyo) 40(10):2885–2887

    Article  CAS  Google Scholar 

  • Himeno E, Nagao T, Nonda J, Okabe H, Irino N, Nakasumi T (1994) Studies on the constituents of the root of Cayaponia tayuya (Vell) Cogn. I. Structures of cayaponosides, new 29-Nor-1,2,3,4,5,10-hexadehydrocucurbitacin glucosides. Chem Pharm Bulln 42(11):2295–2300

    Article  CAS  Google Scholar 

  • Huang H, Zhang S, Su J (2016) Palaeozoic oil–source correlation in the Tarim Basin, NW China: a review. Org Geochem 94:32–46

    Article  CAS  Google Scholar 

  • Igarashi K (1961) Studies on the steroidal components of domestic plants. XXXV. Structure of meteogenin. Chem Pharm Bull 9:722–729

    Article  CAS  Google Scholar 

  • Jacob J, Disnar J-R, Boussafir M, Albuquerque ALS, Sifeddine A (2007) Contrasted distributions of triterpene derivatives in the sediments of Lake Caçó reflect paleoenvironmental changes during the last 20,000 yrs in NE Brazil. Org Geochem 38:180–197

    Article  CAS  Google Scholar 

  • Janeczko A, Skoczowski A (2005) Mammalian sex hormones in plants. Folia Histochem Cytobiol 43:71-79

  • Janot MM, Devissaguet P, Khuong-Huu Q, Goutarel R (1967) Steroid alkaloids. LXVI. New alkaloids from the husks of Holarrhena floribunda (G. Don) Dur. and Schinz: holarrheline, holadienine, holaromine and holaline. Ann Pharm Fr 25(11):733–748

    PubMed  CAS  Google Scholar 

  • Kadis BM (1957) Synthesis of steroid precursors. Thesis, Iowa State University

  • Killops S, Killops V (2004) Front Matter. In: Front matter, in introduction to organic geochemistry. Blackwell Publishing Ltd., Malden. https://doi.org/10.1002/9781118697214.fmatter

    Chapter  Google Scholar 

  • Kim EL, Li JL, Hong J, Yoon WD, Kim HS, Liu Y, Wei X, Jung JH (2016) An unusual 1(10→19)abeo steroid from a jellyfish-derived fungus. Tetrahedron Lett 57(25):2803–2806

    Article  CAS  Google Scholar 

  • Konoshima T, Takasaki M, Kozuka M, Nagao T, Okabe H, Irino N, Nakasumi T, Tokuda H, Nishino H (1995) Inhibitory effects of cucurbitane triterpenoids on Epstein-Barr virus activation and two-stage carcinogenesis of skin tumor. II. Biol Pharm Bull 18(2):284–287

    Article  PubMed  CAS  Google Scholar 

  • Lednicer D (2010) Steroid chemistry at a glance. Wiley, pp. 152

  • Le Milbeau C, Schaeffer P, Connan J, Albrecht P, Adam P (2010) Aromatized C-2 oxygenated triterpenoids as indicators for a new transformation pathway in the environment. Org Lett 12:1504–1507

  • Levitsky DO, Gloriozova TA, Poroikov VV, Dembitsky VM (2016) Naturally occurring isocyano / isothiocyanato compounds: their pharmacological and SAR activities. Mathews. J Pharm Sci 1:3–18

    Google Scholar 

  • Li G, Kusari S, Kusari P, Kayser O, Spiteller M (2015) Endophytic Diaporthe sp. LG23 produces a potent antibacterial tetracyclic triterpenoid. J Nat Prod 78(8):2128–2132

    Article  PubMed  CAS  Google Scholar 

  • Liu XH, Tang XZ, Miao FP, Ji NY (2011) A new pyrrolidine derivative and steroids from an algicolous Gibberella zeae strain. Nat Prod Commun 6(9):1243–1246

    PubMed  CAS  Google Scholar 

  • Lu Z, Van Wagoner RM, Harper MK, Hooper JNA, Ireland CM (2010) Two ring-A aromatized bile acids from the marine sponge Sollasella moretonensis. Nat Prod Commun 5(10):1571–1574

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ludwig B, G ussler G, Wehrung P, Albrecht P (1981) C26-C29 triaromatic steroid derivatives in sediments and petroleums. Tetrahedron Lett 22(34):3313–3316

    Article  CAS  Google Scholar 

  • Luo X, Li F, Shinde PB, Hong J, Lee C-O, Im KS, Jung JH (2006) 26,27-Cyclosterols and other polyoxygenated sterols from a marine sponge Topsentia sp. J Nat Prod 69(12):1760–1768

    Article  PubMed  CAS  Google Scholar 

  • Machida K, Abe T, Arai D, Okamoto M, Shimizu I, de Voogd NJ, Fusetani N, Nakao Y (2014) Cinanthrenol A, an estrogenic steroid containing phenanthrene nucleus, from a marine sponge Cinachyrella sp. Org Lett 16(6):1539–1541

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie AS, Brassell SC, Eglinton G, Maxwell JR (1982) Chemical fossils: the geological fate of steroids. Science 217:491–504

    Article  PubMed  CAS  Google Scholar 

  • Matyasik I, Bieleń W (2015) Aromatic steroids as a tool in geochemical interpretation. Nafta-Gaz LXXI (VI):376–383

  • Minato H, Shimaoka A (1961) Studies on the steroidal components of domestic plants. XLII. Narthogenin, isonarthogenin and neonogiragenin, three new sapogenins of metanarthecium luteo-viride MAXIM. Chem Pharm Bull 9:729–734

    Article  Google Scholar 

  • Misico RI, Veleiro AS, Burton G, Oberti JC (1997) Withanolides from Jaborosa leucotricha. Phytochemistry 45:1045–1048

    Article  CAS  Google Scholar 

  • Misico RI, Nicotra VE, Oberti JC, Barboza G, Gil RR, Burton G (2011) Withanolides and related steroids. Prog Chem Org Nat Prod 94:127–229

  • Murtazalieva KA, Druzhilovskiy DS, Goel RK, Sastry GN, Poroikov VV (2017) How good are publicly available web services that predict bioactivity profiles for drug repurposing? SAR & QSAR Environ Res 28(10):843–862

    Article  CAS  Google Scholar 

  • Nakanishi K (1974) Steroids. In: Nakanishi K, Goto T, Itô S, Natori S, Nozoe S. Natural Products Chemistry. 1. Academic Press. pp. 421–545

  • Niven SJ (1999) The origins and occurrence of estrogenic A-ring aromatic steroids in U.K. sewage treatment works effluents. Thesis, University of Plymouth

  • Oliveira CR, Oliveira CJF, Ferreira AA, Azevedo DA, Neto FRA (2012) Characterization of aromatic steroids and hopanoids in marine and lacustrine crude oils using comprehensive two dimensional gas chromatography coupled to time-of-flight mass spectrometry (GCxGC-TOFMS). Org Geochem 53:131–136

    Article  CAS  Google Scholar 

  • Otto A, White JD, Simoneit BRT (2012) Natural product terpenoids in Eocene and Miocene conifer fossils. Science 297:1543–1545

    Article  Google Scholar 

  • Pantoja S, Wakeham S (2000) Marine organic geochemistry: a general overview. In: Gianguzza A., Pelizetti E., Sammartano S. (eds) Chemical processes in marine environments. Environmental Science. Springer, Berlin, Heidelberg, pp. 43–74

  • Parrish SM, Yoshida WY, Williams PG (2016) New diterpene isolated from a sponge of genus Strongylophora. Planta Med 82(S01):S1–S381

    Google Scholar 

  • Pkheidze TA, Gvazava LN, Kemertelidze ÉP (1991) Luvigenin and hecogenin from the leaves of Yucca gloriosa. Chem Nat Comp 27(3):376–376

    Article  Google Scholar 

  • Poza JJ, Fernández R, Reyes F, Rodríguez J, Jiménez C (2008) Isolation, biological significance, synthesis, and cytotoxic evaluation of new natural parathiosteroids A-C and analogues from the soft coral Paragorgia sp. J Org Chem 73(20):7978–7984

    Article  PubMed  CAS  Google Scholar 

  • Pu F, Philip RP, Li Z, Guangguo Y (1990) Geochemical characteristics of aromatic hydrocarbons of crude oils and source rocks from different sedimentary environments. Org Geochem 16:427–435

    Article  Google Scholar 

  • Qin XD, Liu JK (2004) Natural aromatic steroids as potential molecular fossils from the fruiting bodies of the ascomycete Daldinia concentrica. J Nat Prod 67(12):2133–2135

    Article  PubMed  CAS  Google Scholar 

  • Raeside JI (2017) A brief account of the discovery of the fetal/placental unit for estrogen production in equine and human pregnancies: relation to human medicine. Yale J Biol Med 90(3):449–461

    PubMed  PubMed Central  Google Scholar 

  • Riolo J, Hussler G, Albrecht P, Connan J (1986) Distribution of aromatic steroids in geological samples: their evaluation as geochemical parameters. Org Geochem 10:981–990

    Article  CAS  Google Scholar 

  • Rowland SJ, West CE, Jones D, Scarlett AG, Frank RA, Hewitt LM (2011) Steroidal aromatic ‘naphthenic acids’ in oil sands process-affected water: structural comparisons with environmental estrogens. Environ Sci Technol 45(22):9806–9815

    Article  PubMed  CAS  Google Scholar 

  • Rutherford FJ (1972) Ceric oxidations of aromatic steroids and related compounds. University of Edinburgh, Thesis

    Google Scholar 

  • Schachter B, Marrian GF (1938) Pregnant mares sulfate from the urine of the isolation of estrone. J Biol Chem 126:663–669

    CAS  Google Scholar 

  • Schnell G, Schaeffer P, Motscha E, Adam P (2012) Triterpenoids functionalized at C-2 as diagenetic transformation products of 2,3-dioxygenated triterpenoids from higher plants in buried wood. Org Biomol Chem 10:8276–8282

    Article  PubMed  CAS  Google Scholar 

  • Shirota O, Sekita S, Satake M, Morita H, Takeya K, Itokawa H (2004) Two cangorosin A type triterpene dimers from Maytenus chuchuhuasca. Chem Pharm Bull 52(9):1148–1150

    Article  PubMed  CAS  Google Scholar 

  • Si Y, Yao XH, Zhang CK, Tu ZB (2005) C-32 triterpenes from Taxodium ascendens. Biochem Syst Ecol 33(2):211–214

    Article  CAS  Google Scholar 

  • Simons RG, Grinwich DL (1989) Immunoreactive detection of four mammalian steroids in plants. Can J Bot 67:288–296

    Article  CAS  Google Scholar 

  • Skarzynski B (1933) An oestrogenic substance from plant material. Nature 131:766

    CAS  Google Scholar 

  • Sobolewska D, Michalska K, Podolak I, Grabowska K (2016) Steroidal saponins from the genus Allium. Phytochem Rev 15(1):1–35

    Article  PubMed  CAS  Google Scholar 

  • Su Z, Yuan W, Wang P, Li S (2013) Ethnobotany, phytochemistry, and biological activities of Taxodium Rich. Pharm Crops 4:1–14

    Article  CAS  Google Scholar 

  • Suganda AG, Sukandar EY, Hardhiko RS (2004) Aktivitas antimikroba ekstrak etanol daun yang dipetik dan ekstrak air daun gugur pohon ketapang (Terminalia catappa L.). Acta Pharm Ind XXIX(4):129–133

    Google Scholar 

  • Suganda AG, Sukandar EY, Ratna L (2006) Aktivitas antimikroba ekstrak etanol daun dua belas jenis Tumbuhan marga terminalia (Combretaceae). Acta Pharm Ind XXXI(1):18–23

    Google Scholar 

  • Sukandar EY, Suganda AG, Pertiwi GU (2007) Aktivitas sediaan yang mengandung ekstrak daun ketapang pada kulit kelinci yang diinfeksi dengan ephidermophyton floccosum dan Candida albicans. Acta Pharm Ind XXXII(1):45–49

    Google Scholar 

  • Taub D (1973) Naturally occurring aromatic steroids, in Total Synthesis of Natural Products, Volume 2 (ApSimon J), John Wiley & Sons, Inc., Hoboken, NJ, USA doi: https://doi.org/10.1002/9780470129654.ch4

  • Taub D (1984) The total synthesis of aromatic steroids 1972–1981. J. ApSimon (Ed), John Wiley & Sons, Inc., Hoboken, NJ, USA, 1984. DOI: https://doi.org/10.1002/9780470129692.ch1

  • Toghueo RMK, Zabalgogeazco I, Vázquez de Aldana BR, Boyoma FF (2017a) Enzymatic activity of endophytic fungi from the medicinal plants Terminalia catappa, Terminalia mantaly and Cananga odorata. South African J Bot 109:146–153

    Article  CAS  Google Scholar 

  • Toghueo RMK, Ejiya EI, Sahal D, Yazdani SS, Boyom FF (2017b) Production of cellulolytic enzymes by endophytic fungi isolated from Cameroonian medicinal plants. Int J Curr Microbiol App Sci 6(2):1264–1271

    Article  CAS  Google Scholar 

  • Trifunović J, Borčić V, Vukmirović S, Mikov M (2017) Structural insights into anticancer activity of D-ring modified estrone derivatives using their lipophilicity in estimation of SAR and molecular docking studies. Drug Test Anal 9(10):1650. https://doi.org/10.1002/dta.2242

    Article  PubMed  CAS  Google Scholar 

  • Valente LM, Gunatilaka AA, Glass TE, Kingston DG, Pinto AC (1993) New norcucurbitacin and heptanorcucurbitacin glucosides from Fevillea trilobata. J Nat Prod 56(10):1772–1778

    Article  PubMed  CAS  Google Scholar 

  • Vendruscolo GS, Simoes CMO, Mentz LA (2005) Etnobotanica no Rio Grande do Sul: analise comparative entre o conhecimento original e atual sobre as plantas medicinais nativas. Pesquisa Bot 56:285–320

    Google Scholar 

  • Venugopal JR, Mukku V, Edrada RA, Schmitz FJ, Shanks MK, Chaudhuri B, Fabbro D (2003) New sesquiterpene quinols from a Micronesian sponge, Aka sp. J Nat Prod 66(5):686–689

    Article  CAS  Google Scholar 

  • Wang W, Lee Y, Lee TG, Mun B, Giri AG, Lee J, Kim H, Hahn D, Yang I, Chin J, Choi H, Nam S-J, Kang H (2012) Phorone A and isophorbasone A, sesterterpenoids isolated from the marine sponge Phorbas sp. Org Lett 14(17):4486–4489

    Article  PubMed  CAS  Google Scholar 

  • Williams DE, Steinø A, de Voogd NJ, Mauk AG, Andersen RJ (2012) Halicloic acids A and B isolated from the marine sponge Haliclona sp. collected in the Philippines inhibit indoleamine 2,3-dioxygenase. J Nat Prod 75(8):1451–1458

    Article  PubMed  CAS  Google Scholar 

  • Yan X-H, Liu H-L, Huang H, Li X-B, Guo Y-W (2011) Steroids with aromatic A rings from the Hainan soft coral. Dendronephthya studeri Ridley. J Nat Prod 74(2):175–180

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Wang Z, Liu Y, Yang Z, Li Y, Shah K, Zhang G, Landriault M, Hollebone B, Brown C, Lambert P, Liu Z, Tian S (2013) Aromatic steroids in crude oils and petroleum products and their applications in forensic oil spill identification. Environ Forens 14(4):278–293

    Article  CAS  Google Scholar 

  • Yeung BKS, Hamann MT, Scheuer PJ, Kelly-Borges M (1994) Hapaioside: a 19-norpregnane glycoside from the sponge Cribrochalina olemda. Tetrahedron 50(44):12593–12598

    Article  CAS  Google Scholar 

  • Younglai EV, Solomon S (1968) Formation of estra-1,3,5(10)-triene-3,15a,16a,17b-tetrol (estetrol) and estra-1,3,5(10)-triene-3,15a,17b-triol from neutral precursors. J Clin Endocrinol Metab 28(11):1611–1617

    Article  PubMed  CAS  Google Scholar 

  • Zhang JS, Yang ZH, Tsao TH (1991) The occurrence of estrogens in relation to reproductive processes in flowering plants. Sex Plant Reprod 4:193–196

    Article  CAS  Google Scholar 

  • Zhong-han Y, Yin T, Zong-xun C, Tsao TH (1994) The changes of steroidal sex hormone - testosterone contents in reproductive organs of Lilium davidii Duch. Acta Bot Sin 36:215–220

    Google Scholar 

  • Zuhrotun A, Suganda AG, Nawawi A (2010) Phytochemical study of ketapang bark (Terminaliа Catappa L.) International Conference on Medicinal Plants. Surabaya, Indonesia, 21–22 July 2010

Download references

Acknowledgements

The work was performed in the framework of the Program for Basic Research of State Academies of Sciences for 2013–2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery M. Dembitsky.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dembitsky, V.M., Savidov, N., Poroikov, V.V. et al. Naturally occurring aromatic steroids and their biological activities. Appl Microbiol Biotechnol 102, 4663–4674 (2018). https://doi.org/10.1007/s00253-018-8968-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-8968-7

Keywords

Navigation