Skip to main content
Log in

Improved fermentative l-cysteine overproduction by enhancing a newly identified thiosulfate assimilation pathway in Escherichia coli

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Sulfate (SO4 2−) is an often-utilized and well-understood inorganic sulfur source in microorganism culture. Recently, another inorganic sulfur source, thiosulfate (S2O3 2−), was proposed to be more advantageous in microbial growth and biotechnological applications. Although its assimilation pathway is known to depend on O-acetyl-l-serine sulfhydrylase B (CysM in Escherichia coli), its metabolism has not been extensively investigated. Therefore, we aimed to explore another yet-unidentified CysM-independent thiosulfate assimilation pathway in E. coli. ΔcysM cells could accumulate essential l-cysteine from thiosulfate as the sole sulfur source and could grow, albeit slowly, demonstrating that a CysM-independent thiosulfate assimilation pathway is present in E. coli. This pathway is expected to consist of the initial part of the thiosulfate to sulfite (SO3 2−) conversion, and the latter part might be shared with the final part of the known sulfate assimilation pathway [sulfite → sulfide (S2−) → l-cysteine]. This is because thiosulfate-grown ΔcysM cells could accumulate a level of sulfite and sulfide equivalent to that of wild-type cells. The catalysis of thiosulfate to sulfite is at least partly mediated by thiosulfate sulfurtransferase (GlpE), because its overexpression could enhance cellular thiosulfate sulfurtransferase activity in vitro and complement the slow-growth phenotype of thiosulfate-grown ΔcysM cells in vivo. GlpE is therefore concluded to function in the novel CysM-independent thiosulfate assimilation pathway by catalyzing thiosulfate to sulfite. We applied this insight to l-cysteine overproduction in E. coli and succeeded in enhancing it by GlpE overexpression in media containing glucose or glycerol as the main carbon source, by up to ~1.7-fold (1207 mg/l) or ~1.5-fold (1529 mg/l), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilar-Barajas E, Diaz-Perez C, Ramirez-Diaz MI, Riveros-Rosas H, Cervantes C (2011) Bacterial transport of sulfate, molybdate, and related oxyanions. Biometals 24(4):687–707. doi:10.1007/s10534-011-9421-x

    Article  CAS  PubMed  Google Scholar 

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008. doi:10.1038/msb4100050

    PubMed  Google Scholar 

  • Boronat A, Britton P, Jones-Mortimer MC, Kornberg HL, Lee LG, Murfitt D, Parra F (1984) Location on the Escherichia coli genome of a gene specifying O-acetylserine (thiol)-lyase. J Gen Microbiol 130(3):673–685

    CAS  PubMed  Google Scholar 

  • Bykowski T, van der Ploeg JR, Iwanicka-Nowicka R, Hryniewicz MM (2002) The switch from inorganic to organic sulphur assimilation in Escherichia coli: adenosine 5′-phosphosulphate (APS) as a signalling molecule for sulphate excess. Mol Microbiol 43(5):1347–1358

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Donahue JL, Battle SE, Ray WK, Larson TJ (2008) Biochemical and genetic characterization of PspE and GlpE, two single-domain sulfurtransferases of Escherichia coli. Open Microbiol J 2:18–28. doi:10.2174/1874285800802010018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cipollone R, Ascenzi P, Visca P (2007) Common themes and variations in the rhodanese superfamily. IUBMB Life 59(2):51–59. doi:10.1080/15216540701206859

    Article  CAS  PubMed  Google Scholar 

  • Denk D, Bock A (1987) L-cysteine biosynthesis in Escherichia coli: nucleotide sequence and expression of the serine acetyltransferase (cysE) gene from the wild-type and a cysteine-excreting mutant. J Gen Microbiol 133(3):515–525

    CAS  PubMed  Google Scholar 

  • Fimmel AL, Loughlin RE (1977) Isolation and characterization of cysK mutants of Escherichia coli K12. J Gen Microbiol 103(1):37–43

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42(Database issue):D222–D230. doi:10.1093/nar/gkt1223

    Article  CAS  PubMed  Google Scholar 

  • Foster MW, Forrester MT, Stamler JS (2009) A protein microarray-based analysis of S-nitrosylation. Proc Natl Acad Sci U S A 106(45):18948–18953. doi:10.1073/pnas.0900729106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funahashi E, Saiki K, Honda K, Sugiura Y, Kawano Y, Ohtsu I, Watanabe D, Wakabayashi Y, Abe T, Nakanishi T, Suematsu M, Takagi H (2015) Finding of thiosulfate pathway for synthesis of organic sulfur compounds in Saccharomyces cerevisiae and improvement of ethanol production. J Biosci Bioeng. doi:10.1016/j.jbiosc.2015.04.011

  • Gaitonde MK (1967) A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J 104(2):627–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14(4):378–379

    Article  CAS  PubMed  Google Scholar 

  • Ida T, Sawa T, Ihara H, Tsuchiya Y, Watanabe Y, Kumagai Y, Suematsu M, Motohashi H, Fujii S, Matsunaga T, Yamamoto M, Ono K, Devarie-Baez NO, Xian M, Fukuto JM, Akaike T (2014) Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc Natl Acad Sci U S A 111(21):7606–7611. doi:10.1073/pnas.1321232111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeuchi Y, Shigi N, Kato J, Nishimura A, Suzuki T (2006) Mechanistic insights into sulfur relay by multiple sulfur mediators involved in thiouridine biosynthesis at tRNA wobble positions. Mol Cell 21(1):97–108. doi:10.1016/j.molcel.2005.11.001

    Article  CAS  PubMed  Google Scholar 

  • Ingenbleek Y, Kimura H (2013) Nutritional essentiality of sulfur in health and disease. Nutr Rev 71(7):413–432. doi:10.1111/nure.12050

    Article  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42(Database issue):D199–D205. doi:10.1093/nar/gkt1076

    Article  CAS  PubMed  Google Scholar 

  • Kawano Y, Ohtsu I, Takumi K, Tamakoshi A, Nonaka G, Funahashi E, Ihara M, Takagi H (2015a) Enhancement of l-cysteine production by disruption of yciW in Escherichia coli. J Biosci Bioeng 119(2):176–179. doi:10.1016/j.jbiosc.2014.07.006

    Article  CAS  PubMed  Google Scholar 

  • Kawano Y, Ohtsu I, Tamakoshi A, Shiroyama M, Tsuruoka A, Saiki K, Takumi K, Nonaka G, Nakanishi T, Hishiki T, Suematsu M, Takagi H (2015b) Involvement of the yciW gene in l-cysteine and l-methionine metabolism in Escherichia coli. J Biosci Bioeng 119(3):310–313. doi:10.1016/j.jbiosc.2014.08.012

    Article  CAS  PubMed  Google Scholar 

  • Keseler IM, Mackie A, Peralta-Gil M, Santos-Zavaleta A, Gama-Castro S, Bonavides-Martinez C, Fulcher C, Huerta AM, Kothari A, Krummenacker M, Latendresse M, Muniz-Rascado L, Ong Q, Paley S, Schroder I, Shearer AG, Subhraveti P, Travers M, Weerasinghe D, Weiss V, Collado-Vides J, Gunsalus RP, Paulsen I, Karp PD (2013) EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res 41(Database issue):D605–D612. doi:10.1093/nar/gks1027

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, Mori H (2005) Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12(5):291–299. doi:10.1093/dnares/dsi012

    Article  CAS  PubMed  Google Scholar 

  • Kredich NM, Tomkins GM (1966) The enzymic synthesis of L-cysteine in Escherichia coli and Salmonella typhimurium. J Biol Chem 241(21):4955–4965

    CAS  PubMed  Google Scholar 

  • Larson TJ, Ye SZ, Weissenborn DL, Hoffmann HJ, Schweizer H (1987) Purification and characterization of the repressor for the sn-glycerol 3-phosphate regulon of Escherichia coli K12. J Biol Chem 262(33):15869–15874

    CAS  PubMed  Google Scholar 

  • Longo F, Motta S, Mauri P, Landini P, Rossi E (2016) Interplay of the modified nucleotide phosphoadenosine 5′-phosphosulfate (PAPS) with global regulatory proteins in Escherichia coli: modulation of cyclic AMP (cAMP)-dependent gene expression and interaction with the HupA regulatory protein. Chem Biol Interact 259(Pt A):39–47. doi:10.1016/j.cbi.2016.04.016

    Article  CAS  PubMed  Google Scholar 

  • Maier TH (2003) Semisynthetic production of unnatural L-alpha-amino acids by metabolic engineering of the cysteine-biosynthetic pathway. Nat Biotechnol 21(4):422–427. doi:10.1038/nbt807

    Article  CAS  PubMed  Google Scholar 

  • Nakano S, Ishii I, Shinmura K, Tamaki K, Hishiki T, Akahoshi N, Ida T, Nakanishi T, Kamata S, Kumagai Y, Akaike T, Fukuda K, Sano M, Suematsu M (2015) Hyperhomocysteinemia abrogates fasting-induced cardioprotection against ischemia/reperfusion by limiting bioavailability of hydrogen sulfide anions. J Mol Med (Berl) 93(8):879–889. doi:10.1007/s00109-015-1271-5

    Article  CAS  Google Scholar 

  • Nakatani T, Ohtsu I, Nonaka G, Wiriyathanawudhiwong N, Morigasaki S, Takagi H (2012) Enhancement of thioredoxin/glutaredoxin-mediated L-cysteine synthesis from S-sulfocysteine increases L-cysteine production in Escherichia coli. Microb Cell Factories 11:62. doi:10.1186/1475-2859-11-62

    Article  CAS  Google Scholar 

  • Nonaka G, Yamazaki S, Takumi K (2012) Method for producing l-cysteine. WO Patent WO 2012/137689 A1

  • Ohmura M, Hishiki T, Yamamoto T, Nakanishi T, Kubo A, Tsuchihashi K, Tamada M, Toue S, Kabe Y, Saya H, Suematsu M (2015) Impacts of CD44 knockdown in cancer cells on tumor and host metabolic systems revealed by quantitative imaging mass spectrometry. Nitric Oxide 46:102–113. doi:10.1016/j.niox.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  • Ray WK, Zeng G, Potters MB, Mansuri AM, Larson TJ (2000) Characterization of a 12-kilodalton rhodanese encoded by glpE of Escherichia coli and its interaction with thioredoxin. J Bacteriol 182(8):2277–2284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi E, Motta S, Mauri P, Landini P (2014) Sulfate assimilation pathway intermediate phosphoadenosine 5′-phosphosulfate acts as a signal molecule affecting production of curli fibres in Escherichia coli. Microbiology 160(Pt 9):1832–1844. doi:10.1099/mic.0.079699-0

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Williams RA, Kelly SM, Mottram JC, Coombs GH (2003) 3-Mercaptopyruvate sulfurtransferase of Leishmania contains an unusual C-terminal extension and is involved in thioredoxin and antioxidant metabolism. J Biol Chem 278(3):1480–1486. doi:10.1074/jbc.M209395200

    Article  CAS  PubMed  Google Scholar 

  • Wiriyathanawudhiwong N, Ohtsu I, Li ZD, Mori H, Takagi H (2009) The outer membrane TolC is involved in cysteine tolerance and overproduction in Escherichia coli. Appl Microbiol Biotechnol 81(5):903–913. doi:10.1007/s00253-008-1686-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Takako Hishiki (Clinical and Translational Research Center, Keio University School of Medicine, Tokyo, Japan; Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan) and Dr. Makoto Suematsu (Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan; Japan Science and Technology Agency, Exploratory Research for Advanced Technology (ERATO) Suematsu Gas Biology Project), for providing fundamental method of sulfur metabolomic analysis with LC-MS/MS. We would like to thank Dr. Hirotada Mori (Nara Institute of Science and Technology, Nara, Japan) for providing the strains and plasmids. We would like to thank Taka-Aki Sato (Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan; Shimadzu Co., Kyoto, Japan) for excellent discussion. We would like to thank Editage (www.editage.jp) for English language editing. This work was supported in part by JSPS KAKENHI Grant Numbers JP26450091 and JP15KT0028, by Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries and Food Industry (26027AB) from MAFF, Japan, and by the grant from the SKYLARK Food Science Institute, Japan, to I.O. This work was also supported in part by JSPS KAKENHI Grant Numbers JP16K18675 and JP15KT0028 to Y.K. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwao Ohtsu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 320 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawano, Y., Onishi, F., Shiroyama, M. et al. Improved fermentative l-cysteine overproduction by enhancing a newly identified thiosulfate assimilation pathway in Escherichia coli . Appl Microbiol Biotechnol 101, 6879–6889 (2017). https://doi.org/10.1007/s00253-017-8420-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8420-4

Keywords

Navigation