Skip to main content
Log in

Metagenome-derived haloalkane dehalogenases with novel catalytic properties

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Haloalkane dehalogenases (HLDs) are environmentally relevant enzymes cleaving a carbon-halogen bond in a wide range of halogenated pollutants. PCR with degenerate primers and genome-walking was used for the retrieval of four HLD-encoding genes from groundwater-derived environmental DNA. Using specific primers and the environmental DNA as a template, we succeeded in generating additional amplicons, resulting altogether in three clusters of sequences with each cluster comprising 8–13 closely related putative HLD-encoding genes. A phylogenetic analysis of the translated genes revealed that three HLDs are members of the HLD-I subfamily, whereas one gene encodes an enzyme from the subfamily HLD-II. Two metagenome-derived HLDs, eHLD-B and eHLD-C, each from a different subfamily, were heterologously produced in active form, purified and characterized in terms of their thermostability, pH and temperature optimum, quaternary structure, substrate specificity towards 30 halogenated compounds, and enantioselectivity. eHLD-B and eHLD-C showed striking differences in their activities, substrate preferences, and tolerance to temperature. Profound differences were also determined in the enantiopreference and enantioselectivity of these enzymes towards selected substrates. Comparing our data with those of known HLDs revealed that eHLD-C exhibits a unique combination of high thermostability, high activity, and an unusually broad pH optimum, which covers the entire range of pH 5.5–8.9. Moreover, a so far unreported high thermostability for HLDs was determined for this enzyme at pH values lower than 6.0. Thus, eHLD-C represents an attractive and novel biocatalyst for biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albers CN, Jacobsen OS, Flores ÉMM, Pereira JSF, Laier T (2011) Spatial variation in natural formation of chloroform in the soils of four coniferous forests. Biogeochemistry 103:317–334

    Article  CAS  Google Scholar 

  • Anke H, Weber RWS (2006) White-rots, chlorine and the environment—a tale of many twists. Mycologist 20:83–89

    Article  Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  • Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2006) New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol 72:5734–5741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballschmiter K (2003) Pattern and sources of naturally produced organohalogens in the marine environment: biogenic formation of organohalogens. Chemosphere 52:313–324

    Article  CAS  PubMed  Google Scholar 

  • Bastviken D, Svensson T, Karlsson S, Sandén P, Oberg G (2009) Temperature sensitivity indicates that chlorination of organic matter in forest soil is primarily biotic. Environ Sci Technol 43:3569–3573

    Article  CAS  PubMed  Google Scholar 

  • Bell PL, Sunna A, Gibbs MD, Curach NC, Nevalainen H, Bergquist PL (2002) Prospecting for novel lipase genes using PCR. Microbiology-(UK) 148:2283–2291

    Article  CAS  Google Scholar 

  • Beschkov V, Sapundzhiev T, Torz M, Wietzes P, Janssen DB (2008) Modeling of 1,2-dichloroethane biodegradation by Xanthobacter autotrophicus GJ10 under shock loading of other halogenated compounds in continuous stirred tank bioreactor. Chem Biochem Eng Q 22:339–348

    CAS  Google Scholar 

  • Bidmanova S, Chaloupkova R, Damborsky J, Prokop Z (2010) Development of an enzymatic fiber-optic biosensor for detection of halogenated hydrocarbons. Anal Bioanal Chem 398:1891–1898

    Article  CAS  PubMed  Google Scholar 

  • Bosma T, Damborsky J, Stucki G, Janssen DB (2002) Biodegradation of 1,2,3-trichloropropane through directed evolution and heterologous expression of a haloalkane dehalogenase gene. Appl Environ Microbiol 68:3582–3587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13:253–261

    Article  CAS  PubMed  Google Scholar 

  • Chakravarty S, Varadarajan R (1999) Residue depth: a novel parameter for the analysis of protein structure and stability. Structure 7:723–732

    Article  CAS  PubMed  Google Scholar 

  • Chaloupkova R, Prudnikova T, Rezacova P, Prokop Z, Koudelakova T, Daniel L, Brezovsky J, Ikeda-Ohtsubo W, Kuty M, Sato Y, Nagata Y, Smatanova K, Damborsky J (2014) Structural and functional analysis of a novel haloalkane dehalogenase with two halide-binding sites. Acta Cryst D70:1884–1897

    Google Scholar 

  • Chan WY, Wong M, Guthrie J, Savchenko AV, Yakunin AF, Pai EF, Edwards EA (2010) Sequence- and activity-based screening of microbial genomes for novel dehalogenases. Microb Biotechnol 3:107–120

    Article  CAS  PubMed  Google Scholar 

  • Chovancova E, Kosinski J, Bujnicki JM, Damborsky J (2007) Phylogenetic analysis of haloalkane dehalogenases. Proteins 67:305–316

    Article  CAS  PubMed  Google Scholar 

  • Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucl Acids Res 42:633–642

    Article  Google Scholar 

  • Clarke N, Fuksova K, Gryndler M, Lachmanova Z, Liste H-H, Rohlenova J, Schroll R, Schröder P, Matucha M (2009) The formation and fate of chlorinated organic substances in temperate and boreal forest soils. Environ Sci Pollut Res 16:127-143

  • Daniel L, Buryska T, Prokop Z, Damborsky J, Brezovsky J (2015) Mechanism-based discovery of novel substrates of haloalkane dehalogenases using in silico screening. J Chem Inf Model 55:54–62

    Article  CAS  PubMed  Google Scholar 

  • Drienovska I, Chovancova E, Koudelakova T, Damborsky J, Chaloupkova R (2012) Biochemical characterization of a novel haloalkane dehalogenase from a cold-adapted bacterium. Appl Environ Microbiol 78:4995–4998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erable B, Maugard T, Goubet I, Lamare S, Legoy MD (2005) Biotransformation of halogenated compounds by lyophilized cells of Rhodococcus erythropolis in a continous solid–gas biofilter. Process Biochem 40:45–51

    Article  CAS  Google Scholar 

  • Eschenfeldt WH, Stols L, Rosenbaum H, Khambatta ZS, Quaite-Randall E, Wu S, Kilgore DC, Trent JD, Donnelly MI (2001) DNA from uncultured organisms as a source of 2,5-diketo-D-gluconic acid reductases. Appl Environ Microbiol 67:4206–4214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortova A, Sebestova E, Stepankova V, Koudelakova T, Palkova L, Damborsky J, Chaloupkova R (2013) DspA from Strongylocentrotus purpuratus: the first biochemically characterized haloalkane dehalogenase of non-microbial origin. Biochimie 95:2091–2096

    Article  CAS  PubMed  Google Scholar 

  • Fung HKH, Gadd MS, Drury TA, Cheung S, Guss JM, Coleman NV, Matthews JM (2015) Biochemical and biophysical characterisation of aloalkane dehalogenases DmrA and DmrB in Mycobacterium strain JS60 and their role in growth on haloalkanes. Mol Microbiol 97:439–453

    Article  CAS  PubMed  Google Scholar 

  • Gray KA, Richardson TH, Robertson DE, Swanson PE, Subramanian MV (2003) Soil-based gene discovery: a new technology to accelerate and broaden biocatalytic applications. Adv Appl Microbiol 52:1–27

    Article  CAS  PubMed  Google Scholar 

  • Gribble GW (2000) The natural production of organobromine compounds. Environ Sci Pollut Res 7:37–49

    Article  CAS  Google Scholar 

  • Gribble GW (2003) The diversity of naturally produced organohalogens. Chemosphere 52:289–297

    Article  CAS  PubMed  Google Scholar 

  • Gribble GW (2015) A recent survey of naturally occurring organohalogen compounds. Environ Chem 12:396–405

    Article  CAS  Google Scholar 

  • Hammer PE, Hill DS, Lam ST, Van Pée K-H, Ligon JM (1997) Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Appl Environ Microbiol 74:2147–2154

    Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:245–249

    Article  Google Scholar 

  • Harper DB, McRoberts WC, Kennedy JT (1996) Comparison of the efficacies of chloromethane, methionine, and S-adenosylmethionine as methyl precursors in the biosynthesis of veratryl alcohol and related compounds in Phanerochaete chrysosporium. Appl Environ Microbiol 62:3366–3370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi H, Abe T, Sakamoto M, Ohara H, Ikemura T, Sakka K, Benno Y (2005) Direct cloning of genes encoding novel xylanases from the gut. Can J Microbiol 51:251–259

    Article  CAS  PubMed  Google Scholar 

  • Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJM (2002) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 68:448

    Article  CAS  PubMed Central  Google Scholar 

  • Iwasaki I, Utsumi S, Ozawa T (1952) New colorimetric determination of chloride using mercuric thiocyanate and ferric ion. Bull Chem Soc Jpn 25:226

    Article  CAS  Google Scholar 

  • Janssen DB (2007) Biocatalysis by dehalogenating enzymes. Adv Appl Microbiol 61:233–252

    Article  CAS  PubMed  Google Scholar 

  • Janssen DB, Oppentocht JE, Poelarends GJ (2001) Microbial dehalogenation. Curr Opin Biotechnol 12:254–258

    Article  CAS  PubMed  Google Scholar 

  • Jesenská A, Bartoš M, Czerneková V, Rychlík I, Pavlík I, Damborský J (2002) Cloning and expression of the haloalkane dehalogenase gene dhmA from Mycobycterium avium N85 and preliminary characterization of DhmA. Appl Environ Microbiol 68:3724–3730

    Article  PubMed  PubMed Central  Google Scholar 

  • Jesenská A, Pavlová M, Strouhal M, Chaloupková R, Těšínská I, Monincová M, Prokop Z, Bartoš M, Pavlík I, Rychlík I, Möbius P, Nagata Y, Damborský J (2005) Cloning, biochemical properties, and distribution of mycobacterial haloalkane dehalogenases. Appl Environ Microbiol 71:6736–6745

    Article  PubMed  PubMed Central  Google Scholar 

  • Jesenská A, Monincová M, Koudeláková T, Hasan K, Chaloupková R, Prokop Z, Geerlof A, Damborský J (2009) Biochemical characterization of haloalkane dehalogenases DrbA and DmbC, representatives of a novel subfamily. Appl Environ Microbiol 75:5157–5160

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang Z, Wang H, Ma Y, Wei D (2006) Characterization of two novel lipase genes isolated directly from environmental sample. Appl Microbiol Biotechnol 70:327–332

    Article  CAS  PubMed  Google Scholar 

  • de Jong E, Field JA (1997) Sulfur tuft and turkey tail: biosynthesis and biodegradation of organohalogens by Basidiomycetes. Annu Rev Microbiol 51:375–414

    Article  PubMed  Google Scholar 

  • Keppler F, Borchers R, Pracht J, Rheinberger S, Scholer HF (2002) Natural formation of vinyl chloride in the terrestrial environment. Environ Sci Technol 36:2479–2483

    Article  CAS  PubMed  Google Scholar 

  • Kotik M (2009) Novel genes retrieved from environmental DNA by polymerase chain reaction: current genome-walking techniques for future metagenome applications. J Biotechnol 144:75–82

    Article  CAS  PubMed  Google Scholar 

  • Kotik M, Faměrová V (2012) Sequence diversity in haloalkane dehalogenases, as revealed by PCR using family-specific primers. J Microbiol Methods 88:212–217

    Article  CAS  PubMed  Google Scholar 

  • Kotik M, Štěpánek V, Marešová H, Kyslík P, Archelas A (2009) Environmental DNA as a source of a novel epoxide hydrolase reacting with aliphatic terminal epoxides. J Mol Catal B Enzym 56:288–293

    Article  CAS  Google Scholar 

  • Kotik M, Štěpánek V, Grulich G, Kyslík P, Archelas A (2010) Access to enantiopure aromatic epoxides and diols using epoxide hydrolases derived from total biofilter DNA. J Mol Catal B Enzym 65:41–48

    Article  CAS  Google Scholar 

  • Kotik M, Davidová A, Voříšková J, Baldrian P (2013) Bacterial communities in tetrachloroethene-polluted groundwaters: a case study. Sci Total Environ 454-455:517–527

    Article  CAS  PubMed  Google Scholar 

  • Koudelakova T, Chovancova E, Brezovsky J, Monincova M, Fortova A, Jarkovsky J, Damborský J (2011) Substrate specificity of haloalkane dehalogenases. Biochem J 435:345–354

    Article  CAS  PubMed  Google Scholar 

  • Koudelakova T, Bidmanova S, Dvorak P, Pavelka A, Chaloupkova R, Prokop Z, Damborsky J (2013) Haloalkane dehalogenases: biotechnological applications. Biotechnol J 8:32–45

    Article  CAS  PubMed  Google Scholar 

  • Krieger E, Vriend G (2014) YASARA view—molecular graphics for all devices—from smartphones to workstations. Bioinformatics 30:2981–2982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzmič P (2009) DynaFit—a software package for enzymology. Meth Enzymol 467:247–280

    Article  PubMed  Google Scholar 

  • Labes A, Karlsson EN, Fridjonsson OH, Turner P, Hreggvidson GO, Kristjansson JK, Holst O, Schönheit P (2008) Novel members of glycoside hydrolase family 13 derived from environmental DNA. Appl Environ Microbiol 74:1914–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laturnus F, Fahimi I, Gryndler M, Hartmann A, Heal MR, Matucha M, Schöler HF, Schroll R, Svensson T (2005) Natural formation and degradation of chloroacetic acids and volatile organochlorines in forest soil. Environ Sci Pollut Res 12:233–244

    Article  CAS  Google Scholar 

  • Li A, Shao Z (2014) Biochemical characterization of a haloalkane dehalogenase DadB from Alcanivorax dieselolei B-5. PLoS One 9:e89144

    Article  PubMed  PubMed Central  Google Scholar 

  • Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, Wood MG, Learish R, Friedman Ohana R, Urh M, Simpson D, Mendez J, Zimmerman K, Otto P, Vidugiris G, Zhu J, Darzins A, Klaubert DH, Bulleit RF, Wood KV (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382

    Article  CAS  PubMed  Google Scholar 

  • Lutje Spelberg JH, Rink R, Kellogg RM, Janssen DB (1998) Enantioselectivity of a recombinant epoxide hydrolase from Agrobacterium radiobacter. Tetrahedron-Asymmetry 9:459–466

    Article  Google Scholar 

  • Marchand P, Lamare S, Legoy M-D, Goubet I (2009) Dehalogenation of gaseous 1-chlorobutane by dehydrated whole cells: influence of the microenvironment of the halidohydrolase on the stability of the biocatalyst. Biotechnol Bioeng 103:687–695

    Article  CAS  PubMed  Google Scholar 

  • Novak HR, Sayer C, Isupov MN, Gotz D, Spragg AM, Littlechild JA (2014) Biochemical and structural characterisation of a haloalkane dehalogenase from marine Rhodobacteraceae. FEBS Lett 588:1616–1622

    Article  CAS  PubMed  Google Scholar 

  • Pavlova M, Klvana M, Prokop Z, Chaloupkova R, Banas P, Otyepka M, Wade RC, Tsuda M, Nagata Y, Damborsky J (2009) Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat Chem Biol 5:727–733

    Article  CAS  PubMed  Google Scholar 

  • van Pée K-H, Unversucht S (2003) Biological dehalogenation and halogenation reactions. Chemosphere 52:299–312

    Article  PubMed  Google Scholar 

  • Pieters RJ, Lutje Spelberg JH, Kellog RM, Janssen D (2001) The enantioselectivity of haloalkane dehalogenases. Tetrahedron Lett 42:469–471

    Article  CAS  Google Scholar 

  • Pries F, van den Wijngaard AJ, Bos R, Pentenga M, Janssen DB (1994) The role of spontaneous cap domain mutations in haloalkane dehalogenase specificity and evolution. J Biol Chem 269:17490–17494

    CAS  PubMed  Google Scholar 

  • Prokop Z, Opluštil F, DeFrank J, Damborský J (2006) Enzymes fight chemical weapons. Biotechnol J 1:1370–1380

    Article  CAS  PubMed  Google Scholar 

  • Prokop Z, Sato Y, Brezovsky J, Mozga T, Chaloupkova R, Koudelakova T, Jerabek P, Stepankova V, Natsume R, van Leeuwen JGE, Janssen DB, Florian J, Nagata Y, Senda T, Damborsky J (2010) Enantioselectivity of haloalkane dehalogenases and its modulation by surface loop engineering. Angew Chem Int Ed 49:6111–6115

    Article  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoemaker HE, Mink D, Wubbolts MG (2003) Dispelling the myths—biocatalysis in industrial synthesis. Science 299:1694–1697

    Article  CAS  PubMed  Google Scholar 

  • Smith DRM, Grüschow S, Goss JM (2013) Scope and potential of halogenases in biosynthetic applications. Curr Opin Chem Biol 17:276–283

    Article  CAS  PubMed  Google Scholar 

  • Steele HL, Jaeger K-E, Daniel R, Streit WR (2008) Advances in recovery of novel biocatalysts from metagenomes. J Mol Microbiol Biotechnol 16:25–37

    Article  PubMed  Google Scholar 

  • Stucki G, Thüer M (1995) Experiences of a large-scale application of 1,2-dichloroethane degrading micro-organisms for groundwater treatment. Environ Sci Technol 29:2339–2345

    Article  CAS  PubMed  Google Scholar 

  • Sunna A, Bergquist PL (2003) A gene encoding a novel extremely thermostable 1,4-β-xylanase isolated directly from an environmental DNA sample. Extremophiles 7:63–70

    CAS  PubMed  Google Scholar 

  • Swanson PE (1999) Dehalogenases applied to industrial-scale biocatalysis. Curr Opin Biotechnol 10:365–369

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tang K, Utairungsee T, Kanokratana P, Sriprang R, Champreda V, Eurwilaichitr L, Tanapongpipat S (2006) Characterization of a novel cyclomaltodextrinase expressed from environmental DNA isolated from Bor Khleung hot spring in Thailand. FEMS Microbiol Lett 260:91–99

    Article  PubMed  Google Scholar 

  • Uchiyama T, Miyazaki K (2009) Functional metagenomics for enzyme discovery: challenges to efficient screening. Curr Opin Biotechnol 20:616–622

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama T, Watanabe K (2006) Improved inverse PCR scheme for metagenome walking. BioTechniques 41:183–188

    Article  CAS  PubMed  Google Scholar 

  • Weerachavangkul C, Laothanachareon T, Boonyapakron K, Wongwilaiwalin S, Nimchua T, Eurwilaichitr L, Pootanakit K, Igarashi Y, Champreda V (2012) Alkaliphilic endoxylanase from lignocellulolytic microbial consortium metagenome for biobleaching of eucalyptus pulp. J Microbiol Biotechnol 22:1636–1643

    Article  CAS  PubMed  Google Scholar 

  • Weigold P, El-Hadidi M, Ruecker A, Huson DH, Scholten T, Jochmann M, Kappler A, Behrens S (2016) A metagenomic-based survey of microbial (de)halogenation potential in a German forest soil. Sci Rep 6:28958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westerbeek A, Szymański W, Wijma HJ, Marrink SJ, Feringa BL, Janssen DB (2011) Kinetic resolution of α-bromoamides: experimental and theoretical investigation of highly enantioselective reactions catalyzed by haloalkane dehalogenases. Adv Synth Catal 353:931–944

    Article  CAS  Google Scholar 

  • Westerbeek A, van Leeuwen JGE, Szymański W, Feringa BL, Janssen DB (2012) Haloalkane dehalogenase catalysed desymmetrisation and tandem kinetic resolution for the preparation of chiral haloalcohols. Tetrahedron 68:7645–7650

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Envisan—GEM a.s. (Prague, Czech Republic) for the groundwater samples and their analyses. This work was supported by the Czech Science Foundation (grants P504/10/0137 and 16-07965S). We also acknowledge support for the long-term conceptual advancement of the Institute of Microbiology (RVO61388971). The research infrastructure for this project was supported by the following grants from the Czech Ministry of Education: LO1214, LM2015051, LM2015047, and LM2015055. Antonin Kunka acknowledges the Brno Municipality for funding a Ph.D. Talent Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiri Damborsky.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical statement

All laboratory experiments were carried in line with the ethical guidelines.

Electronic supplementary material

ESM 1

(PDF 1642 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotik, M., Vanacek, P., Kunka, A. et al. Metagenome-derived haloalkane dehalogenases with novel catalytic properties. Appl Microbiol Biotechnol 101, 6385–6397 (2017). https://doi.org/10.1007/s00253-017-8393-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8393-3

Keywords

Navigation