Skip to main content
Log in

Optimization of the fermentation and downstream processes for human enterokinase production in Pichia pastoris

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Enterokinase is one of the most frequently used enzymes for the removal of affinity tags from target recombinant proteins. In this study, several fermentation strategies were assayed for the production of human enterokinase in Pichia pastoris under constitutive GAP promoter. Two of them with controlled specific growth rate during whole cultivation showed a very low enterokinase activity, under 1 U/ml, of the fermentation medium. On the contrary, the combined fermentation with a maximum specific growth rate at the initial phase of the fermentation and stationary-like phase during the rest of the fermentation showed a significant accumulation of the enterokinase in the medium, which counted up to 1400 U/ml. Lower cultivation temperature had a negative impact on the enzyme accumulation during this fermentation strategy. Downstream processes were focused on buffer environment optimization directly after cultivation, as at this time, the most amount of the activity is eliminated by endogenous proteases. Slightly positive effect on enzyme activity in the medium had an addition of liquid storage solution of EDTA and KOH to adjust pH to 8 and molarity of the EDTA to 50 mM. During the purification process, a significant amount of the enzyme was detected to be lost, which counted up to 90%. The purified enzyme, enterokinase, kept quality standard of the published enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Boer H, Teeri TT, Koivula A (2000) Characterization of Trichoderma reesei cellobiohydrolase Cel7A secreted from Pichia pastoris using two different promoters. Biotechnol Bioeng 69(5):486–494

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24(1):45–66

    Article  CAS  PubMed  Google Scholar 

  • Cereghino GP, Cereghino JL, Ilgen C, Cregg JM (2002) Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol 13(4):329–332

    Article  PubMed  Google Scholar 

  • Chun H, Joo K, Lee J, Shin HC (2011) Design and efficient production of bovine enterokinase light chain with higher specificity in E. coli. Biotechnol Lett 33(6):1227–1232

    Article  CAS  PubMed  Google Scholar 

  • Cos O, Resina D, Ferrer P, Montesinos JL, Valero F (2005) Heterologous production of Rhizopus oryzae lipase in Pichia pastoris using the alcohol oxidase and formaldehyde dehydrogenase promoters in batch and fed-batch cultures. Biochem Eng J 26(2–3):86–94

    Article  CAS  Google Scholar 

  • Cregg JM, Cereghino JL, Shi J, Higgins DR (2000) Recombinant protein expression in Pichia pastoris. Mol Biotechnol 16(1):23–52

    Article  CAS  PubMed  Google Scholar 

  • Delroisse J-M, Dannau M, Gilsoul J-J, El Mejdoub T, Destain J, Portetelle D, Thonart P, Haubruge E, Vandenbol M (2005) Expression of a synthetic gene encoding a Tribolium castaneum carboxylesterase in Pichia pastoris. Protein Expr Purif 42(2):286–294

    Article  CAS  PubMed  Google Scholar 

  • Fang L, Sun QM, Hua ZC (2004) Expression of recombinant Chinese bovine enterokinase catalytic subunit in P. pastoris and its purification and characterization. Acta Biochim Biophys Sin Shanghai 36(7):513–517

    Article  CAS  PubMed  Google Scholar 

  • Ferrer-Miralles N, Domingo-Espin J, Corchero JL, Vazquez E, Villaverde A (2009) Microbial factories for recombinant pharmaceuticals. Microb Cell Factories 8:17

    Article  Google Scholar 

  • Garcia-Ortega X, Ferrer P, Montesinos JL, Valero F (2013) Fed-batch operational strategies for recombinant Fab production with Pichia pastoris using the constitutive GAP promoter. Biochem Eng J 79:172–181

    Article  CAS  Google Scholar 

  • Gasparian ME, Ostapchenko VG, Schulga AA, Dolgikh DA, Kirpichnikov MP (2003) Expression, purification, and characterization of human enteropeptidase catalytic subunit in Escherichia coli. Protein Expr Purif 31(1):133–139

    Article  CAS  PubMed  Google Scholar 

  • Gasparian ME, Ostapchenko VG, Dolgikh DA, Kirpichnikov MP (2006) Biochemical characterization of human enteropeptidase light chain. Biochem Mosc 71(2):113–119

    Article  CAS  Google Scholar 

  • Goodrick JC, Xu M, Finnegan R, Schilling BM, Schiavi S, Hoppe H, Wan NC (2001) High-level expression and stabilization of recombinant human chitinase produced in a continuous constitutive Pichia pastoris expression system. Biotechnol Bioeng 74(6):492–497

    Article  CAS  PubMed  Google Scholar 

  • Heyland J, Fu J, Blank LM, Schmid A (2010) Quantitative physiology of Pichia pastoris during glucose-limited high-cell density fed-batch cultivation for recombinant protein production. Biotechnol Bioeng 107(2):357–368

    Article  CAS  PubMed  Google Scholar 

  • Hong F, Meinander NQ, Jonsson LJ (2002) Fermentation strategies for improved heterologous expression of laccase in Pichia pastoris. Biotechnol Bioeng 79(4):438–449

    Article  CAS  PubMed  Google Scholar 

  • Hosfield T, Lu Q (1999) Influence of the amino acid residue downstream of (Asp)4 Lys on enterokinase cleavage of a fusion protein. Anal Biochem 269(1):10–16

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Kim YH, Roh YH, Seong BL, Shin CS (2005) Optimization of enterokinase fermentation using a recombinant Saccharomyces cerevisiae. Process Biochem 40:717–722

    Article  CAS  Google Scholar 

  • Kobayashi K, Kuwae S, Ohya T, Ohda T, Ohyama M, Ohi H, Tomomitsu K, Ohmura T (2000) High-level expression of recombinant human serum albumin from the methylotrophic yeast Pichia pastoris with minimal protease production and activation. J Biosci Bioeng 89(1):55–61

    Article  CAS  PubMed  Google Scholar 

  • LaVallie ER, DiBlasio EA, Kovacic S, Grant KL, Schendel PF, McCoy JM (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology (N Y) 11(2):187–193

    Article  CAS  Google Scholar 

  • Li Z, Xiong F, Lin Q, d’Anjou M, Daugulis AJ, Yang DS, Hew CL (2001) Low-temperature increases the yield of biologically active herring antifreeze protein in Pichia pastoris. Prot Exp Pur 21(3):438–445

    Article  Google Scholar 

  • Looser V, Bruhlmann B, Bumbak F, Stenger C, Costa M, Camattari A, Fotiadis D, Kovar K (2015) Cultivation strategies to enhance productivity of Pichia pastoris: a review. Biotechnol Adv 33(6 Pt 2):1177–1193

    Article  CAS  PubMed  Google Scholar 

  • Lu D (1997) Bovine proenteropeptidase is activated by trypsin, and the specificity of enteropeptidase depends on the heavy chain. J Biol Chem 272(50):31293–31300

    Article  CAS  PubMed  Google Scholar 

  • Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologou protein production using the Pichia pastoris expression system. Yeast 22(4):249–270

    Article  CAS  PubMed  Google Scholar 

  • Mattanovich D, Graf A, Stadlmann J, Dragosits M, Redl A, Maurer M, Kleinheinz M, Sauer M, Altmann F, Gasser B (2009) Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris. Microb Cell Factories 8:29

    Article  Google Scholar 

  • Maurer M, Kuhleitner M, Gasser B, Mattanovich D (2006) Versatile modeling and optimization of fed batch processes for the production of secreted heterologous proteins with Pichia pastoris. Microb Cell Factories 5:37

    Article  Google Scholar 

  • Mikhailova AG, Likhareva VV, Teich N, Rumsh LD (2007) The ways of realization of high specificity and efficiency of enteropeptidase. Protein Pept Lett 14(3):227–232

    Article  CAS  PubMed  Google Scholar 

  • Pepeliaev S, Krahulec J, Cerny Z, Jilkova J, Tlusta M, Dostalova J (2011) High level expression of human enteropeptidase light chain in Pichia pastoris. J Biotechnol 156(1):67–75

    Article  CAS  PubMed  Google Scholar 

  • Potvin G, Ahmad A, Zhang Z (2012) Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: a review. Biochem Eng J 64:91–105

    Article  CAS  Google Scholar 

  • Ragon M, Neugnot-Roux V, Chemardin P, Moulin G, Boze H (2008) Molecular gene cloning and overexpression of the phytase from Debaryomyces castellii CBS 2923. Protein Expr Purif 58(2):275–283

    Article  CAS  PubMed  Google Scholar 

  • Simeonov P, Berger-Hoffmann R, Hoffmann R, Strater N, Zuchner T (2011) Surface supercharged human enteropeptidase light chain shows improved solubility and refolding yield. Protein Eng Des Sel 24(3):261–268

    Article  CAS  PubMed  Google Scholar 

  • Sinha J, Plantz BA, Inan MMM (2005) Causes of proteolytic degradation of secreted recombinant proteins produced in methylotrophic yeast Pichia pastoris: case study with recombinant ovine interferon-tau. Biotechnol Bioeng 89(1):102–112

    Article  CAS  PubMed  Google Scholar 

  • Skala W, Goettig P, Brandstetter H (2013) Do-it-yourself histidine-tagged bovine enterokinase: a handy member of the protein engineer’s toolbox. J Biotechnol 168(4):421–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svetina M, Kraševec N, Gaberc-Porekar V, Komel R (2000) Expression of catalytic subunit of bovine enterokinase in the filamentous fungus Aspergilus niger. J Biotechnol 76:245–251

    Article  CAS  PubMed  Google Scholar 

  • Vogl T, Glieder A (2013) Regulation of Pichia pastoris promoters and its consequences for protein production. New Biotechnol 30(4):385–404

    Article  CAS  Google Scholar 

  • Vozza LA, Wittwer L, Higgins DR, Purcell TJ, Bergseid M, Collins-Racie LA, LaVallie ER, Hoeffler JP (1996) Production of a recombinant bovine enterokinase catalytic subunit in the methylotrophic yeast Pichia pastoris. Bio/Technology 14:77–81

    Article  CAS  PubMed  Google Scholar 

  • Wu JM, Wang SY, Fu WC (2012) Lower temperature cultures enlarge the effects of Vitreoscilla hemoglobin expression on recombinant Pichia pastoris. Int J Mol Sci 13(10):13212–13226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young CL, Britton ZT, Robinson AS (2012) Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnol J 7(5):620–634

    Article  CAS  PubMed  Google Scholar 

  • Zhang AL, Zhang TY, Luo JX, Chen SC, Guan WJ, Fu CY, Peng SQ, Li HL (2007) Constitutive expression of human angiostatin in Pichia pastoris by high-density cell culture. J Ind Microbiol Biotechnol 34(2):117–122

    Article  PubMed  Google Scholar 

  • Zhang AL, Luo JX, Zhang TY, Pan YW, Tan YH, Fu CY, Tu FZ (2009) Recent advances on the GAP promoter derived expression system of Pichia pastoris. Mol Biol Rep 36(6):1611–1619a

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Wang J, Deng R, Wang X (2008) Scale-up fermentation of recombinant Candida rugosa lipase expressed in Pichia pastoris using the GAP promoter. J Ind Microbiol Biotechnol 35(3):189–195

    Article  CAS  PubMed  Google Scholar 

  • Zheng XL, Kitamoto Y, Sadler JE (2009) Enteropeptidase, a type II transmembrane serine protease. Front Biosci (Elite Ed) 1:242–249

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0119-12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ján Krahulec.

Ethics declarations

Funding

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0119-12.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melicherová, K., Krahulec, J., Šafránek, M. et al. Optimization of the fermentation and downstream processes for human enterokinase production in Pichia pastoris . Appl Microbiol Biotechnol 101, 1927–1934 (2017). https://doi.org/10.1007/s00253-016-7960-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7960-3

Keywords

Navigation