Skip to main content
Log in

Expression and characterization of a glucose-tolerant β-1,4-glucosidase with wide substrate specificity from Cytophaga hutchinsonii

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cytophaga hutchinsonii is a gram-negative bacterium that can efficiently degrade crystalline cellulose by a novel strategy without cell-free cellulases or cellulosomes. Genomic analysis implied that C. hutchinsonii had endoglucanases and β-glucosidases but no exoglucanases which could processively digest cellulose and produce cellobiose. In this study, BglA was functionally expressed in Escherichia coli and found to be a β-glucosidase with wide substrate specificity. It can hydrolyze pNPG, pNPC, cellobiose, and cellodextrins. Moreover, unlike most β-glucosidases whose activity greatly decreases with increasing length of the substrate chains, BglA has similar activity on cellobiose and larger cellodextrins. The K m values of BglA on cellobiose, cellotriose, and cellotetraose were calculated to be 4.8 × 10−2, 5.6 × 10−2, and 5.3 × 10−2 mol/l, respectively. These properties give BglA a great advantage to cooperate with endoglucanases in C. hutchinsonii in cellulose degradation. We proposed that C. hutchinsonii could utilize a simple cellulase system which consists of endoglucanases and β-glucosidases to completely digest amorphous cellulose into glucose. Moreover, BglA was also found to be highly tolerant to glucose as it retained 40 % activity when the concentration of glucose was 100 times higher than that of the substrate, showing potential application in the bioenergy industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adlakha N, Sawant S, Anil A, Lali A, Yazdani SS (2012) Specific fusion of β-1,4-endoglucanase and β-1,4-glucosidase enhances cellulolytic activity and helps in channeling of intermediates. Appl Environ Microbiol 78(20):7447–7454. doi:10.1128/AEM.01386-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai A, Zhao X, Jin Y, Yang G, Feng Y (2013) A novel thermophilic β-glucosidase from Caldicellulosiruptor bescii: characterization and its synergistic catalysis with other cellulases. J Mol Catal B Enzym 85-86:248–256. doi:10.1016/j.molcatb.2012.09.016

    Article  CAS  Google Scholar 

  • Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15:583–620

    Article  CAS  PubMed  Google Scholar 

  • Bhatia Y, Mishra S, Bisaria VS (2002) Microbial β-glucosidases: cloning, properties and applications. Crit Rev Biotechnol 22(4):375–407

    Article  CAS  PubMed  Google Scholar 

  • Decker CH, Visser J, Schreier P (2000) β-glucosidases from five black Aspergillus species: study of their physico-chemical and biocatalytic properties. J Agric Food Chem 48:4929–4936

    Article  CAS  PubMed  Google Scholar 

  • Decker CH, Visser J, Schreier P (2001) β-glucosidase multiplicity from Aspergillus tubingensis CBS 643.92: purification and characterization of four β-glucosidases and their differentiation with respect to substrate specificity, glucose inhibition and acid tolerance. Appl Microbiol Biotechnol 55(2):157–163. doi:10.1007/s002530000462

    Article  CAS  PubMed  Google Scholar 

  • Hoh YK, Yeoh HH, Tan TK (1992) Properties of β-glucosidase purified from Aspergillus niger mutants USDB 0827 and USDB0828. Appl Microbiol Biotechnol 37:590–593

    Article  CAS  Google Scholar 

  • Ji X, Wang Y, Zhang C, Bai X, Zhang W, Lu X (2014) Novel outer membrane protein involved in cellulose and cellooligosaccharide degradation by Cytophaga hutchinsonii. Appl Environ Microbiol 80:4511–4518

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji X, Xu Y, Zhang C, Chen N, Lu X (2012) A new locus affects cell motility, cellulose binding, and degradation by Cytophaga hutchinsonii. Appl Microbiol Biotechnol 96(1):161–170. doi:10.1007/s00253-012-4051-y

    Article  CAS  PubMed  Google Scholar 

  • Joo AR, Jeya M, Lee KM, Sim WI, Kim JS, Kim IW, Kim YS, Oh DK, Gunasekaran P, Lee JK (2009) Purification and characterization of a β-1,4-glucosidase from a newly isolated strain of Fomitopsis pinicola. Appl Microbiol Biotechnol 83(2):285–294. doi:10.1007/s00253-009-1861-7

    Article  CAS  PubMed  Google Scholar 

  • Louime C, Abazinge M, Johnson E, Latinwo L, Ikediobi C, Clark AM (2007) Molecular cloning and biochemical characterization of a family-9 endoglucanase with an unusual structure from the gliding bacteria Cytophaga hutchinsonii. Appl Biochem Biotechnol 141(1):127–138

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Charles W, Tillman UG (1999) Biocommodity engineering. Biotechnol Prog 15(5):777–793

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Weimer PJ, Van zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577. doi:10.1128/mmbr.66.3.506-577.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallerman J, Papinutti L, Levin L (2015) Characterization of β-glucosidase produced by the white rot fungus Flammulina velutipes. J Microbiol Biotechnol 25(1):57–65

    Article  CAS  PubMed  Google Scholar 

  • Nguyen NP, Lee KM, Lee KM, Kim IW, Kim YS, Jeya M, Lee JK (2010) One-step purification and characterization of a β-1,4-glucosidase from a newly isolated strain of Stereum hirsutum. Appl Microbiol Biotechnol 87(6):2107–2116. doi:10.1007/s00253-010-2668-2

    Article  CAS  PubMed  Google Scholar 

  • Rutter C, Mao Z, Chen R (2013) Periplasmic expression of a Saccharophagus cellodextrinase enables E. coli to ferment cellodextrin. Appl Microbiol Biotechnol 97(18):8129–8138. doi:10.1007/s00253-012-4646-3

    Article  CAS  PubMed  Google Scholar 

  • Sørensen A, Ahring BK, Lübeck M, Ubhayasekera W, Bruno KS, Culley DE, Lübeck PS (2012) Identifying and characterizing the most significant β-glucosidase of the novel species Aspergillus saccharolyticus. Can J Microbiol 58(9):1035–1046. doi:10.1139/w2012-076

    Article  PubMed  Google Scholar 

  • Suen G, Weimer PJ, Stevenson DM, Aylward FO, Boyum J, Deneke J, Drinkwater C, Ivanova NN, Mikhailova N, Chertkov O, Goodwin LA, Currie CR, Mead D, Brumm PJ (2011) The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. PLoS One 6(4):e18814. doi:10.1371/journal.pone.0018814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker E, Warren FL (1938) Decomposition of cellulose by Cytophaga. Biochem J 32(1):31–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wang Z, Cao J, Guan Z, Lu X (2014) FLP-FRT-based method to obtain unmarked deletions of CHU_3237 (porU) and large genomic fragments of Cytophaga hutchinsonii. Appl Environ Microbiol 80(19):6037–6045

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie G, Bruce DC, Challacombe JF, Chertkov O, Detter JC, Gilna P, Han CS, Lucas S, Misra M, Myers GL, Richardson P, Tapia R, Thayer N, Thompson LS, Brettin TS, Henrissat B, Wilson DB, McBride MJ (2007) Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl Environ Microbiol 73(11):3536–3546. doi:10.1128/AEM.00225-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaldivar M, Velasquez JC, Contreras I, Perez LM (2001) Trichoderma aureoviride 7-121, a mutant with enhanced production of lytic enzymes: its potential use in waste cellulose degradation and/or biocontrol. Electron J Biotechnol 4(3):1–9

    Article  Google Scholar 

  • Zhang C, Wang Y, Li Z, Zhou X, Zhang W, Zhao Y, Lu X (2014) Characterization of a multi-function processive endoglucanase CHU_2103 from Cytophaga hutchinsonii. Appl Microbiol Biotechnol 98(15):6679–6687. doi:10.1007/s00253-014-5640-8

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Zhang W, Lu X (2015) Expression and characteristics of a Ca2+-dependent endoglucanase from Cytophaga hutchinsonii. Appl Microbiol Biotechnol 99(22):9617–9623. doi:10.1007/s00253-015-6746-3

    Article  CAS  PubMed  Google Scholar 

  • Zhang YH, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88(7):797–824. doi:10.1002/bit.20282

    Article  CAS  PubMed  Google Scholar 

  • Zhang YH, Cui J, Lynd LR, Kuang LR (2006) A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules 7:644–648

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Zhou H, Bi Y, Zhang W, Chen G, Liu W (2013) Characterization of a family 5 glycoside hydrolase isolated from the outer membrane of cellulolytic Cytophaga hutchinsonii. Appl Microbiol Biotechnol 97(9):3925–3937. doi:10.1007/s00253-012-4259-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely thank Dr. Mark J. McBride (University of Wisconsin-Milwaukee, Milwaukee, USA) for providing C. hutchinsonii ATCC 33406 and Dr. Edward C. Mignot, Shandong University, for linguistic advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemei Lu.

Ethics declarations

Funding

This work was funded by the National Science Foundation of China (31371262 and 31170051) and Sci-Tech Development Project of Shandong Province (2014GGH202001).

Conflict of interest

All authors declare that they do not have conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Wang, X., Zhang, W. et al. Expression and characterization of a glucose-tolerant β-1,4-glucosidase with wide substrate specificity from Cytophaga hutchinsonii . Appl Microbiol Biotechnol 101, 1919–1926 (2017). https://doi.org/10.1007/s00253-016-7927-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7927-4

Keywords

Navigation