Skip to main content

Advertisement

Log in

In vitro production of baculoviruses: identifying host and virus genes associated with high productivity

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Baculoviruses are recognized as viral workhorses of biotechnology, being used for production of vaccines, complex recombinant proteins, gene delivery vectors‚ and safe biological pesticides. Improving production yields and understanding the interactions of the virus and its host cell are important aspects of ensuring baculovirus-based processes are commercially competitive. This study aims at potential optimization of host cells used in in vitro virus production by systemically investigating changes in host gene expression in response to virus replication and transcription inside host cells. The study focuses on in vitro interactions of the Helicoverpa armigera virus with Helicoverpa zea insect cells. We used 22 genome-wide microarrays to simultaneously measure both virus and host genes in infected cells in multiple batch suspension cultures, representing high- and low-producing infection conditions. Among 661 differentially expressed genes, we identified a core set of 59 host genes consistently overexpressed post infection, with strong overrepresentation of genes involved in retrotransposition, protein processing in the endoplasmic reticulum, and ubiquitin-mediated proteolysis. Applying a whole genome correlation network analysis to link gene expression to productivity, we revealed 18 key genes significantly associated to virus yield. In addition, this study is among the first to perform a genome-wide expression study for a major baculovirus group II strain, the H. armigera virus, extending current understanding of baculovirus-insect interactions, which mainly focuses on group I viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bao YY, Lv ZY, Liu ZB, Xue J, Xu YP, Zhang CX (2010) Comparative analysis of Bombyx mori nucleopolyhedrovirus responsive genes in fat body and haemocyte of B. mori resistant and susceptible strains. Insect Mol Biol 19(3):347–358

    Article  CAS  PubMed  Google Scholar 

  • Bernal V, Carinhas N, Yokomizo AY, Carrondo MJ, Alves PM (2009) Cell density effect in the baculovirus-insect cells system: a quantitative analysis of energetic metabolism. Biotechnol Bioeng 104(1):162–180

    Article  CAS  PubMed  Google Scholar 

  • Breitenbach JE, Popham HJ (2013) Baculovirus replication induces the expression of heat shock proteins in vivo and in vitro. Arch Virol 158(7):1517–1522

    Article  CAS  PubMed  Google Scholar 

  • Breitenbach JE, Shelby KS, Popham HJR (2011) Baculovirus induced transcripts in hemocytes from the larvae of Heliothis virescens. Viruses 3(11):2047–2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y-R, Zhong S, Fei Z, Gao S, Zhang S, Li Z, Wang P, Blissard GW (2014) Transcriptome responses of the host Trichoplusia ni to infection by the baculovirus Autographa californica multiple nucleopolyhedrovirus. J Virol 88(23):13781–13797

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi JY, Roh JY, Wang Y, Zhen Z, Tao XY, Lee JH, Liu Q, Kim JS, Shin SW, Je YH (2012) Analysis of genes expression of Spodoptera exigua larvae upon AcMNPV infection. PLoS One 7(7):e42462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B, Hanspers K, Isserlin R, Kelley R, Killcoyne S, Lotia S, Maere S, Morris J, Ono K, Pavlovic V, Pico AR, Vailaya A, Wang PL, Adler A, Conklin BR, Hood L, Kuiper M, Sander C, Schmulevich I, Schwikowski B, Warner GJ, Ideker T, Bader GD (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2(10):2366–2382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crisci E, Bárcena J, Montoya M (2012) Virus-like particles: the new frontier of vaccines for animal viral infections. Vet Immunol Immunopathol 148(3–4):211–225

    Article  CAS  PubMed  Google Scholar 

  • Felberbaum RS (2015) The baculovirus expression vector system: a commercial manufacturing platform for viral vaccines and gene therapy vectors. Biotechnol J 10(5):702–714

    Article  CAS  PubMed  Google Scholar 

  • Giri L, Feiss MG, Bonning BC, Murhammer DW (2012) Production of baculovirus defective interfering particles during serial passage is delayed by removing transposon target sites in fp25k. J Gen Virol 93(2):389–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorlov IP, Gallick GE, Gorlova OY, Amos C, Logothetis CJ (2009) GWAS meets microarray: are the results of genome-wide association studies and gene-expression profiling consistent? Prostate cancer as an example. PLoS One 4(8):e6511

    Article  PubMed  PubMed Central  Google Scholar 

  • Harada T, Harada C, Wang YL, Osaka H, Amanai K, Tanaka K, Takizawa S, Setsuie R, Sakurai M, Sato Y, Noda M, Wada K (2004) Role of ubiquitin carboxy terminal hydrolase-L1 in neural cell apoptosis induced by ischemic retinal injury in vivo. Am J Pathol 164(1):59–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, Stephens R, Baseler MW, Lane HC, Lempicki RA (2007) The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 8(9):R183–R183

    Article  PubMed  PubMed Central  Google Scholar 

  • Huynh HT, Tran TTB, Chan LCL, Nielsen LK, Reid S (2014) Effect of the peak cell density of recombinant AcMNPV-infected Hi5 cells on baculovirus yields. Appl Microbiol Biotechnol 99(4):1687–1700

    Article  PubMed  Google Scholar 

  • Huynh HT, Tran TTB, Chan LCL, Nielsen LK, Reid S (2015) Decline in Helicoverpa armigera nucleopolyhedrovirus occlusion body yields with increasing infection cell density in vitro is strongly correlated with viral DNA levels. Arch Virol 160(9):2169–2180

    Article  CAS  PubMed  Google Scholar 

  • Imai N, Matsuda N, Tanaka K, Nakano A, Matsumoto S, Kang W (2003) Ubiquitin ligase activities of Bombyx mori nucleopolyhedrovirus RING finger proteins. J Virol 77(2):923–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsuma S, Tsuchida A, Matsuda-Imai N, Kang W, Shimada T (2011) Role of the ubiquitin-proteasome system in Bombyx mori nucleopolyhedrovirus infection. J Gen Virol 92(Pt 3):699–705

    Article  CAS  PubMed  Google Scholar 

  • Knox C, Moore SD, Luke GA, Hill MP (2015) Baculovirus-based strategies for the management of insect pests: a focus on development and application in South Africa. Biocontrol Sci Tech 25(1):1–20

    Article  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9(1):559

    Article  PubMed  PubMed Central  Google Scholar 

  • Langfelder P, Horvath S (2012) Fast R functions for robust correlations and hierarchical clustering. J Stat Softw 46(11)

  • Lerch RA, Friesen PD (1992) The baculovirus-integrated retrotransposon TED encodes gag and pol proteins that assemble into viruslike particles with reverse transcriptase. J Virol 66(3):1590–1601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lilley BN, Ploegh HL (2004) A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429(6994):834–840

    Article  CAS  PubMed  Google Scholar 

  • Lin S-Y, Chung Y-C, Hu Y-C (2014) Update on baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert Rev Vaccines 13(12):1501–1521

    Article  CAS  PubMed  Google Scholar 

  • Lindner HA (2007) Deubiquitination in virus infection. Virology 362(2):245–256

    Article  CAS  PubMed  Google Scholar 

  • Lyupina YV, Zatsepina OG, Timokhova AV, Orlova OV, Kostyuchenko MV, Beljelarskaya SN, Evgen’ev MB, Mikhailov VS (2011) New insights into the induction of the heat shock proteins in baculovirus infected insect cells. Virology 421(1):34–41

    Article  CAS  PubMed  Google Scholar 

  • Matindoost L, Chan LC, Qi YM, Nielsen LK, Reid S (2012) Suspension culture titration: a simple method for measuring baculovirus titers. J Virol Methods 183(2):201–209

    Article  CAS  PubMed  Google Scholar 

  • Mcintosh A, Ignoffo C (1983) Characterization of five cell lines established from species of Heliothis. Appl Entomol Zool 18:262–269

    Google Scholar 

  • McTaggart SJ, Hannah T, Bridgett S, Garbutt JS, Kaur G, Boots M (2015) Novel insights into the insect trancriptome response to a natural DNA virus. BMC Genomics 16(1):310

    Article  PubMed  PubMed Central  Google Scholar 

  • Mena JA, Kamen AA (2011) Insect cell technology is a versatile and robust vaccine manufacturing platform. Expert Rev Vaccines 10(7):1063–1081

    Article  CAS  PubMed  Google Scholar 

  • Menzel T, Rohrmann GF (2008) Diversity of errantivirus (retrovirus) sequences in two cell lines used for baculovirus expression, Spodoptera frugiperda and Trichoplusia ni. Virus Genes 36(3):583–586

    Article  CAS  PubMed  Google Scholar 

  • Miller DW, Miller LK (1982) A virus mutant with an insertion of a copia-like transposable element. Nature 299(5883):562–564

    Article  CAS  PubMed  Google Scholar 

  • Moscardi F, de Souza ML, de Castro MEB, Lara Moscardi M, Szewczyk B (2011) Baculovirus pesticides: present state and future perspectives. In: Ahmad I, Ahmad F, Pichtel J (eds) Microbes and microbial technology: agricultural and environmental applications. Springer New York, New York, NY, pp. 415–445

    Chapter  Google Scholar 

  • Nguyen Q, Qi YM, Wu Y, Chan LC, Nielsen LK, Reid S (2011) In vitro production of Helicoverpa baculovirus biopesticides-automated selection of insect cell clones for manufacturing and systems biology studies. J Virol Methods 175(2):197–205

    Article  CAS  PubMed  Google Scholar 

  • Nguyen Q, Palfreyman RW, Chan LC, Reid S, Nielsen LK (2012) Transcriptome sequencing of and microarray development for a Helicoverpa zea cell line to investigate in vitro insect cell-baculovirus interactions. PLoS One 7(5):e36324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen Q, Chan LC, Nielsen LK, Reid S (2013a) Genome scale analysis of differential mRNA expression of Helicoverpa zea insect cells infected with a H. armigera baculovirus. Virology 444(1–2):158–170

    Article  CAS  PubMed  Google Scholar 

  • Nguyen Q, Nielsen L, Reid S (2013b) Genome scale transcriptomics of baculovirus-insect interactions. Viruses 5(11):2721–2747

    Article  PubMed  PubMed Central  Google Scholar 

  • Park Y, Hwang YP, Lee JS, Seo SH, Yoon SK, Yoon JB (2005) Proteasomal ATPase-associated factor 1 negatively regulates proteasome activity by interacting with proteasomal ATPases. Mol Cell Biol 25(9):3842–3853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson MN, Rohrmann GF (2002) Transfer, incorporation, and substitution of envelope fusion proteins among members of the Baculoviridae, Orthomyxoviridae, and Metaviridae (insect retrovirus) families. J Virol 76(11):5301–5304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedrini MR, Reid S, Nielsen LK, Chan LC (2011) Kinetic characterization of the group II Helicoverpa armigera nucleopolyhedrovirus propagated in suspension cell cultures: implications for development of a biopesticides production process. Biotechnol Prog 27(3):614–624

    Article  CAS  PubMed  Google Scholar 

  • Reid S, Chan L, van Oers MM (2014) Chapter 13—production of entomopathogenic viruses. In: Morales-Ramos J, Guadalupe R, Shapiro-Ilan D (eds) Mass production of beneficial organisms. Academic Press, San Diego, California, pp. 437–482

    Chapter  Google Scholar 

  • Sagisaka A, Fujita K, Nakamura Y, Ishibashi J, Noda H, Imanishi S, Mita K, Yamakawa M, Tanaka H (2010) Genome-wide analysis of host gene expression in the silkworm cells infected with Bombyx mori nucleopolyhedrovirus. Virus Res 147(2):166–175

    Article  CAS  PubMed  Google Scholar 

  • Salem TZ, Zhang F, Xie Y, Thiem SM (2011) Comprehensive analysis of host gene expression in Autographa californica nucleopolyhedrovirus-infected Spodoptera frugiperda cells. Virology 412(1):167–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article3

  • Srinivasa M, Jagadeesh CJB, Anitha CN, Girish G (2008) Laboratory evaluation of available commercial formulations of HaNPV against Helicoverpa armigera (Hub.). J Biopesticides 1(2):138–139

    CAS  Google Scholar 

  • van den Boomen DJH, Timms RT, Grice GL, Stagg HR, Skødt K, Dougan G, Nathan JA, Lehner PJ (2014) TMEM129 is a derlin-1 associated ERAD E3 ligase essential for virus-induced degradation of MHC-I. Proc Natl Acad Sci USA 111(31):11425–11430

    Article  PubMed  PubMed Central  Google Scholar 

  • van Oers MM, Pijlman GP, Vlak JM (2015) Thirty years of baculovirus-insect cell protein expression: from dark horse to mainstream technology. J Gen Virol 96(Pt 1):6–23

    Article  PubMed  Google Scholar 

  • Wang W, Wu J, Wu X, Song Z, Ji P, Zhang Z, He J (2004) Deletion of superoxide dismutase gene of Bombyx mori nuclear polyhedrosis virus affects viral DNA replication. Int J Ind Entom 9:225–228

    Google Scholar 

  • Wang F, Zhang CX, Shyam Kumar V, Wu XF (2005) Influences of chitinase gene deletion from BmNPV on the cell lysis and host liquefaction. Arch Virol 150(5):981–990

    Article  CAS  PubMed  Google Scholar 

  • Woltje M, Bobel M, Rheinnecker M, Tettamanti G, Franzetti E, Saviane A, Cappellozza S (2014) Transgenic protein production in silkworm silk glands requires cathepsin and chitinase of Autographa californica multicapsid nucleopolyhedrovirus. Appl Microbiol Biotechnol 98(10):4571–4580

    Article  PubMed  Google Scholar 

  • Wong KT, Peter CH, Greenfield PF, Reid S, Nielsen LK (1996) Low multiplicity infection of insect cells with a recombinant baculovirus: the cell yield concept. Biotechnol Bioeng 49(6):659–666

    Article  CAS  PubMed  Google Scholar 

  • Xue JL, Salem TZ, Turney CM, Cheng XW (2010) Strategy of the use of 28S rRNA as a housekeeping gene in real-time quantitative PCR analysis of gene transcription in insect cells infected by viruses. J Virol Methods 163(2):210–215

    Article  CAS  PubMed  Google Scholar 

  • Xue J, Qiao N, Zhang W, Cheng RL, Zhang XQ, Bao YY, Xu YP, Gu LZ, Han JD, Zhang CX (2012) Dynamic interactions between Bombyx mori nucleopolyhedrovirus and its host cells revealed by transcriptome analysis. J Virol 86(13):7345–7359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Helen Speirs (The Ramaciotti Centre for Gene Function Analysis, Australia) for the technical support with the microarray experiment and Robert Simpson (School of Chemistry and Molecular Biosciences, The University of Queensland, Australia) for the assistance with the qPCR assay. The authors also wish to acknowledge financial support from the Australian Research Council (Linkage grant LP0989824), Agrichem Pty Ltd., and The University of Queensland.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quan Nguyen or Steven Reid.

Ethics declarations

Funding

This study was funded by the Australian Research Council (Linkage grant LP0989824).

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 801 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, Q., TB.Tran, T., Chan, L.C. et al. In vitro production of baculoviruses: identifying host and virus genes associated with high productivity. Appl Microbiol Biotechnol 100, 9239–9253 (2016). https://doi.org/10.1007/s00253-016-7774-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7774-3

Keywords

Navigation