Skip to main content

Advertisement

Log in

Enhancement of microbial diversity and methane yield by bacterial bioaugmentation through the anaerobic digestion of Haematococcus pluvialis

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microalgae has recalcitrant cell walls that may limit digestibility and, therefore, reduce bioenergy production. In light of the fact that cellulose can increase the cell wall recalcitrance of the Haematococcus pluvialis species of microalgae, the objective of this research was to examine how bioaugmentation with the Clostridium thermocellum at various inoculum ratios represents a viable method by which the CH4 production of microalgae can be enhanced. The results of the investigation revealed that bioaugmentation with C. thermocellum increased the degradation of H. pluvialis biomass and resulted in a 18–38 % increase in methane production as a result of increased cell disruption. In addition, the use of Illumina Miseq sequencing highlighted that the bacterial and archaeal diversity and quantities in the genus were enhanced as a result of the addition of C. thermocellum and this, in itself, improved the efficiency of the biodegradation. Bioaugmentation with C. thermocellum (%15) was also determined to represent the most energy-efficiency method of producing methane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • American Public Health Association (APHA) (2005) Standard methods for the examination of water and wastewater, 21st ed. American Public Health Association, Washington, DC

  • Aydin S (2016) Enhanced biodegradation of antibiotic combinations via the sequential treatment of the sludge resulting from pharmaceutical wastewater treatment using white-rot fungi Trametes versicolor and Bjerkandera adusta. Appl Microbiol Biotechnol 1–9

  • Aydin S, Ince B, Ince O (2015a) Application of real-time PCR to determination of combined effect of antibiotics on bacteria, methanogenic archaea, Archaea in anaerobic sequencing batch reactors. Water Res 76:88–98

    Article  CAS  PubMed  Google Scholar 

  • Aydin S, Ince B, Ince O (2015b) Development of antibiotic resistance genes in microbial communities during long-term operation of anaerobic reactors in the treatment of pharmaceutical wastewater. Water Res 83:337–344. doi:10.1016/j.watres.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  • Aydin S, Ince B, Ince O (2016) Assessment of anaerobic bacterial diversity and its effects on the anaerobic system stability and the occurrence of resistance genes. Bioresour Technol 207:332–338

    Article  CAS  PubMed  Google Scholar 

  • Ba F, Ursu AV, Laroche C, Djelveh G (2016) Haematococcus pluvialis soluble proteins: extraction, characterization, concentration/fractionation and emulsifying properties. Bioresour Technol 200:147–152. doi:10.1016/j.biortech.2015.10.012

    Article  CAS  PubMed  Google Scholar 

  • Bruhn A, Dahl J, Nielsen HB, Nikolaisen L, Rasmussen MB, Markager S, Olesen B, Arias C, Jensen PD (2011) Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion. Bioresour Technol 102:2595–2604

    Article  CAS  PubMed  Google Scholar 

  • Carrere H, Antonopoulou G, Affes R, Passos F, Battimelli A, Lyberatos G, Ferrer I (2015) Review of feedstock pretreatment strategies for improved anaerobic digestion: from lab-scale research to full-scale application. Bioresour Technol 199:386–397. doi:10.1016/j.biortech.2015.09.007

    Article  PubMed  Google Scholar 

  • Ellis JT, Tramp C, Sims RC, Miller CD (2012) Characterization of a methanogenic community within an algal fed anaerobic digester. ISRN Microbiol 2012:1–12. doi:10.5402/2012/753892

    Google Scholar 

  • Eroglu E, Smith SM, Raston, CL (2015) Biomass and biofuels from microalgae 2:331–345. doi:10.1007/978-3-319-16640-7

  • Heaven S, Milledge J, Zhang Y (2011) Comments on “Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable.”. Biotechnol Adv 29:164–167. doi:10.1016/j.biotechadv.2010.10.005

    Article  CAS  PubMed  Google Scholar 

  • Inglesby AE, Griffiths MJ, Harrison STL, van Hille RP (2015) Anaerobic digestion of Spirulina sp. and Scenedesmus sp.: a comparison and investigation of the impact of mechanical pre-treatment. J Appl Phycol 27:1891–1900. doi:10.1007/s10811-015-0669-3

    Article  CAS  Google Scholar 

  • Lakaniemi AM, Hulatt CJ, Thomas DN, Tuovinen OH, Puhakka JA (2011) Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass. Biotechnol Biofuels 4:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JW (2012) Advanced biofuels and bioproducts. Adv Biofuels Bioprod. doi:10.1007/978-1-4614-3348-4

    Google Scholar 

  • Lichtfouse E, Schwarzbauer J, Robert D (2015) CO2 sequestration. Biofuels Depollution. doi:10.1007/978-3-319-11906-9

    Google Scholar 

  • Lü F, Ji J, Shao L, He P (2013) Bacterial bioaugmentation for improving methane and hydrogen production from microalgae. Biotechnol Biofuels 6:92. doi:10.1186/1754-6834-6-92

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma J, Zhao Q-B, Laurens LLM, Jarvis EE, Nagle NJ, Chen S, Frear CS (2015) Mechanism, kinetics and microbiology of inhibition caused by long-chain fatty acids in anaerobic digestion of algal biomass. Biotechnol Biofuels 8:141. doi:10.1186/s13068-015-0322-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahdy A, Mendez L, Ballesteros M, González-Fernández C (2015) Algaculture integration in conventional wastewater treatment plants: anaerobic digestion comparison of primary and secondary sludge with microalgae biomass. Bioresour Technol 184:236–244. doi:10.1016/j.biortech.2014.09.145

    Article  CAS  PubMed  Google Scholar 

  • Mai NL, Koo Y (2014) Production of biofuels and chemicals with ionic liquids. doi:10.1007/978–94–007-7711-8

  • Milano J, Ong HC, Masjuki HH, Chong WT, Lam MK, Loh PK, Vellayan V (2016) Microalgae biofuels as an alternative to fossil fuel for power generation. Renew Sust Energ Rev 58:180–197. doi:10.1016/j.rser.2015.12.150

    Article  Google Scholar 

  • Molinuevo-Salces B, Mahdy A, Ballesteros M, González-Fernández C (2016) From piggery wastewater nutrients to biogas: microalgae biomass revalorization through anaerobic digestion. Renew Energy. doi:10.1016/j.renene.2016.01.090

    Google Scholar 

  • Morken J, Sapci Z, Strømme JET (2013) Modeling of biodiesel production in algae cultivation with anaerobic digestion (ACAD). Energy Policy 60:98–105. doi:10.1016/j.enpol.2013.04.081

    Article  CAS  Google Scholar 

  • Nath K, Das D (2004) Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 65:520–529. doi:10.1007/s00253-004-1644-0

    Article  CAS  PubMed  Google Scholar 

  • Passos F, Ferrer I (2015) Influence of hydrothermal pretreatment on microalgal biomass anaerobic digestion and bioenergy production. Water Res 68:364–373. doi:10.1016/j.watres.2014.10.015

    Article  CAS  PubMed  Google Scholar 

  • Passos F, Carretero J, Ferrer I (2015) Comparing pretreatment methods for improving microalgae anaerobic digestion: thermal, hydrothermal, microwave and ultrasound. Chem Eng J 279:667–672. doi:10.1016/j.cej.2015.05.065

    Article  CAS  Google Scholar 

  • Phukan MM, Chutia RS, Konwar BK, Kataki R (2011) Microalgae Chlorella as a potential bio-energy feedstock. Appl Energ 88:3307–3312

    Article  CAS  Google Scholar 

  • Razon LF, Tan RR (2011) Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis. Appl Energy 88:3507–3514. doi:10.1016/j.apenergy.2010.12.052

    Article  CAS  Google Scholar 

  • Sánchez HEP, Travieso CL (1993) Anaerobic digestion of Chlorella vulgaris for energy production. Resour, Conserv Recy 9:127–132

    Article  Google Scholar 

  • Sapci Z, Morken J (2014) The effect of algae species on biodiesel and biogas production observed by using a data model combines algae cultivation with an anaerobic digestion (ACAD) and a biodiesel process. Energy Convers Manag 79:519–524. doi:10.1016/j.enconman.2013.12.010

    Article  CAS  Google Scholar 

  • Schwede S, Rehman Z-U, Gerber M, Theiss C, Span R (2013) Effects of thermal pretreatment on anaerobic digestion of Nannochloropsis salina biomass. Bioresour Technol 143:505–511. doi:10.1016/j.biortech.2013.06.043

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Bauddh K, Bux F (2015) Algae and environmental sustainability. Algae Environ Sustain Ser Dev Appl Phycol 7:155–164. doi:10.1007/978-81-322-2641-3

    Google Scholar 

  • Varol A, Ugurlu A (2015) Biogas production from microalgae (Spirulina platensis) in a two stage anaerobic system. Waste Biomass Valorization 7:1–8. doi:10.1007/s12649-015-9442-8

    Google Scholar 

  • Ward AJ, Lewis DM, Green FB (2014) Anaerobic digestion of algae biomass: a review. Algal Res 5:204–214. doi:10.1016/j.algal.2014.02.001

    Article  Google Scholar 

  • Yen HW, Brune DE (2007) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol 98:130–134

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Republic of Turkey Ministry of Science, Industry and Technology for their support of this research (Project No: 0328.TGSD.2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevcan Aydin.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the author.

Conflict of interest

The author declare that she has no competing interests.

Electronic supplementary materials

ESM 1

(PDF 70 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, S. Enhancement of microbial diversity and methane yield by bacterial bioaugmentation through the anaerobic digestion of Haematococcus pluvialis . Appl Microbiol Biotechnol 100, 5631–5637 (2016). https://doi.org/10.1007/s00253-016-7501-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7501-0

Keywords

Navigation