Skip to main content

Advertisement

Log in

Polyene macrolide biosynthesis in streptomycetes and related bacteria: recent advances from genome sequencing and experimental studies

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The polyene macrolide group includes important antifungal drugs, to which resistance does not arise readily. Chemical and biological methods have been used in attempts to make polyene antibiotics with fewer toxic side effects. Genome sequencing of producer organisms is contributing to this endeavour, by providing access to new compounds and by enabling yield improvement for polyene analogues obtained by engineered biosynthesis. This recent work is also enhancing bioinformatic methods for deducing the structures of cryptic natural products from their biosynthetic enzymes. The stereostructure of candicidin D has recently been determined by NMR spectroscopy. Genes for the corresponding polyketide synthase have been uncovered in several different genomes. Analysis of this new information strengthens the view that protein sequence motifs can be used to predict double bond geometry in many polyketides.

Chemical studies have shown that improved polyenes can be obtained by modifying the mycosamine sugar that is common to most of these compounds. Glycoengineered analogues might be produced by biosynthetic methods, but polyene glycosyltransferases show little tolerance for donors other than GDP-α-D-mycosamine. Genome sequencing has revealed extending glycosyltransferases that add a second sugar to the mycosamine of some polyenes. NppY of Pseudonocardia autotrophica uses UDP-N-acetyl-α-D-glucosamine as donor whereas PegA from Actinoplanes caeruleus uses GDP-α-D-mannose. These two enzymes show 51 % sequence identity and are also closely related to mycosaminyltransferases. These findings will assist attempts to construct glycosyltransferases that transfer alternative UDP- or (d)TDP-linked sugars to polyene macrolactones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abu-Salah (1996) Amphotericin B, an update. Br J Biomed Sci 52:122–133

    Google Scholar 

  • Alhamadsheh MM, Palaniappan N, DasChoudri S, Reynolds KA (2007) Modular polyketide synthases and cis double bond formation: establishment of activated cis-3-cyclohexylpropenoic acid as the diketide intermediate in phoslactomycin biosynthesis. J Am Chem Soc 129:1910–1911. doi:10.1021/ja068818t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson TM, Clay MC, Cioffi AG, Diaz KA, Hisao GS, Tuttle MD, Nieuwkoop AJ, Comellas G, Maryum N, Wang S, Uno BE, Wildeman EL, Gonen T, Rienstra CM, Burke MD (2014) Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat Chem Biol 10:400–406. doi:10.1038/nchembio.1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annaval T, Paris C, Leadlay PF, Jacob C, Weissman KJ (2015) Evaluating ketoreductase exchanges as a means of rationally altering polyketide stereochemistry. Chembiochem 16(9):1357–1364. doi:10.1002/cbic.201500113

    Article  CAS  PubMed  Google Scholar 

  • Aparicio JF, Barreales EG, Payero TD, Vicente CM, de Pedro A, Santos-Aberturas J (2016) Biotechnological production and application of the antibiotic pimaricin: biosynthesis and its regulation. Appl Microbiol Biotechnol 100:61–78. doi:10.1007/s00253-015-7077-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey CB, Pasman ME, Keatinge-Clay AT (2015) Substrate structure–activity relationships guide rational engineering of modular polyketide synthase ketoreductases. Chem Comm 52:792–795. doi:10.1039/C5CC07315D

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barke J, Seipke RF, Grüschow S, Heavens D, Drou N, Bibb MJ, Goss RJM, Yu DW, Hutchings MI (2010) A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol 8:109–118. doi:10.1186/1741-7007-8-109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonnett SA, Whicher JR, Papireddy K, Florova G, Smith JL, Reynolds KA (2013) Structural and stereochemical analysis of a modular polyketide synthase ketoreductase domain required for the generation of a cis-alkene. Chem Biol 20(6):772–783. doi:10.1016/j.chembiol.2013.04.014

    Article  CAS  PubMed  Google Scholar 

  • Borjihan H, Ogita A, Fujita K-I, Hirasawa E, Tanaka T (2009) The vacuole-targeting fungicidal activity of amphotericin B against the pathogenic fungus Candida albicans and its enhancement by allicin. J Antibiot (Tokyo) 62:691–697. doi:10.1038/ja.2009.103

    Article  CAS  Google Scholar 

  • Brautaset T, Sekurova ON, Sletta H, Ellingsen TE, Strom AR, Valla S, Zotchev SB (2000) Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC 11455: analysis of the gene cluster and deduction of the biosynthetic pathway. Chem Biol 7:395–403. doi:10.1016/S1074-5521(00)00120-4

    Article  CAS  PubMed  Google Scholar 

  • Brautaset T, Sletta H, Nedal A, Borgos SEF, Degnes KF, Bakke I, Volokhan O, Sekurova ON, Treshalin ID, Mirchink EP, Dikiy A, Ellingsen TE, Zotchev S (2008) Improved antifungal polyene macrolides via engineering of the nystatin biosynthetic genes in Streptomyces noursei. Chem Biol 15(11):1198–1206. doi:10.1016/j.chembiol.2008.08.009

    Article  CAS  PubMed  Google Scholar 

  • Bruheim P, Borgos SEF, Tsan P, Sletta H, Ellingsen TE, Lancelin JM, Zotchev SB (2004) Chemical diversity of polyene macrolides produced by Streptomyces noursei ATCC 11455 and recombinant strain ERD44 with genetically altered polyketide synthase NysC. Antimicrob Agents Chemother 48:4120–4129. doi:10.1128/AAC.48.11.4120-4129.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caffrey P (2003) Conserved amino acid residues correlating with ketoreductase stereospecificity in modular polyketide synthases. Chembiochem 4:649–662. doi:10.1002/cbic.200300581

    Article  CAS  Google Scholar 

  • Caffrey P, Aparicio JF, Malpartida F, Zotchev SB (2008) Biosynthetic engineering of polyene macrolides towards generation of improved antifungal and antiparasitic agents. Curr Top Med Chem 8:639–653. doi:10.2174/156802608784221479

    Article  CAS  PubMed  Google Scholar 

  • Cao B, Yao F, Zheng X, Cui D, Shao Y, Zhu C, Deng Z, You D (2012) Genome mining of the biosynthetic gene cluster of the polyene macrolide antibiotic tetramycin and characterization of a P450 monooxygenase involved in the hydroxylation of the tetramycin B polyol segment. Chembiochem 13:2234–2242. doi:10.1002/cbic.201200402

    Article  CAS  PubMed  Google Scholar 

  • Carmody M, Murphy B, Byrne B, Power P, Rai D, Rawlings B, Caffrey P (2005) Biosynthesis of amphotericin derivatives lacking exocyclic carboxyl groups. J Biol Chem 280:34420–34426. doi:10.1074/jbc.M506689200

    Article  CAS  PubMed  Google Scholar 

  • Cereghetti D, Carreira E (2006) Amphotericin B: 50 years of chemistry and biochemistry. Synthesis 6:914–942. doi:10.1055/s-2006-926368

    Google Scholar 

  • Che Q, Li T, Liu X, Yao T, Li J, Gu Q, Li D, Li W, Zhu T (2015) Genome scanning inspired isolation of reedsmycins A–F, polyene-polyol macrolides from Streptomyces sp. CHQ-64. RSC Adv 5:22777–22782. doi:10.1039/C4RA15415K

    Article  CAS  Google Scholar 

  • Chen S, Mao X, Shen Y, Zhou Y, Li J, Wang L, Tao X, Yang L, Wang Y, Zhou X, Deng Z, Wei D (2009) Tailoring the P450 monooxygenase gene for FR-008/candicidin biosynthesis. Appl Environ Microbiol 75(6):1778–1781. doi:10.1128/AEM.00859-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cioffi AG, Hou J, Grillo AS, Diaz KA, Burke MD (2015) Restored physiology in protein-deficient yeast by a small molecule channel. J Am Chem Soc 137:10096–10099. doi:10.1021/jacs.5b05765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corral MJ, Serrano DR, Moreno I, Torrado JJ, Domınguez M, Alunda JM (2014a) Efficacy of low doses of amphotericin B plus allicin against experimental visceral leishmaniasis. J Antimicrob Chemother 69:3268–3274. doi:10.1093/jac/dku290

    Article  CAS  PubMed  Google Scholar 

  • Corral MJ, González-Sánchez E, Cuquerella M, Alunda JM (2014b) In vitro synergistic effect of amphotericin B and allicin on Leishmania donovani and L. infantum. Antimicrob Agents Chemother 58(3):1596–1602. doi:10.1128/AAC.00710-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croatt MP, Carreira EM (2011) Probing the role of the mycosamine C2’-OH on the activity of amphotericin B. Org Lett 13:1390–1393. doi:10.1021/ol2000765

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Ni X, Shao W, Su J, Su J, Ren J, Xia H (2015) Functional manipulations of the tetramycin positive regulatory gene ttmRIV to enhance the production of tetramycin A and nystatin A1 in Streptomyces ahygroscopicus. J Ind Microbiol Biotechnol 42(9):1273–1282. doi:10.1007/s10295-015-1660-3

  • Cybulska B, Gadomska I, Mazerski J, Grzybowska J, Borowski E, Cheron M, Bolard J (2000) N-Methyl-N-D-fructosyl amphotericin B methyl ester (MF-AME), a novel antifungal agent of low toxicity: Monomer/micelle control over selective toxicity. Acta Biochim Pol 47:121–131

  • Davis SA, Vincent BM, Endo MM, Whitesell L, Marchillo K, Andes DR, Lindquist S, Burke MD (2015) Nontoxic antimicrobials that evade drug resistance. Nat Chem Biol 11:481–487. doi:10.1021/jacs.5b05766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Poire E, Stephens N, Rawlings BJ, Caffrey P (2013) Engineered biosynthesis of disaccharide-modified polyene macrolides. Appl Environ Microbiol 79(19):6156–6159. doi:10.1128/AEM.02197-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delattin N, Bruno PA, Cammue BPA, Thevissen K (2014) Reactive oxygen species-inducing antifungal agents and their activity against fungal biofilms. Future Med Chem 6(1):77–90. doi:10.4155/fmc.13.189

    Article  CAS  PubMed  Google Scholar 

  • Escudero L, Al-Refai A, Nieto C, Laatsch H, Malpartida F, Seco EM (2015) New rimocidin/CE-108 derivatives obtained by a crotonyl-CoA carboxylase/reductase gene disruption in Streptomyces diastaticus var. 108: substrates for the polyene carboxamide synthase PcsA. PLoS One 10(8):e0135891. doi:10.1371/journal.pone.0135891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Essig S, Schmalzbauer B, Bretzke S, Scherer O, Koeberle A, Werz O, Müller R, Menche D (2016) Predictive bioinformatic assignment of methyl-bearing stereocenters: total synthesis and an additional molecular target of ajudazol B. J Org Chem 81(4):1333–1357. doi:10.1021/acs.joc.5b02844

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Grüschow S, Barke J, Seipke RF, Hill LM, Orivel J, Yu DW, Hutchings M, Goss RJM (2014) Filipins: the first antifungal “weed killers” identified from bacteria isolated from the trap-ant. RSC Adv 4:57267–57270. doi:10.1039/C4RA09875G

    Article  CAS  Google Scholar 

  • Gray KC, Palacios DS, Dailey I, Endo MM, Uno BE, Wilcock BC, Burke MD (2012) Amphotericin primarily kills yeast by simply binding ergosterol. Proc Natl Acad Sci U S A 109:2234–2239. doi:10.1073/pnas.1117280109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haeder S, Wirth R, Herz H, Spiteller D (2009) Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc Natl Acad Sci U S A 106:4742–4746. doi:10.1073/pnas.0812082106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartsel S, Bolard J (1996) Amphotericin B: new life for an old drug. Trends Pharm Sci 17:445–449. doi:10.1016/S0165-6147(96)01012-7

    Article  CAS  PubMed  Google Scholar 

  • Hartsel SC, Weiland TR (2003) Amphotericin B binds to amyloid fibrils and delays their formation: a therapeutic mechanism? Biochemistry 42(20):6228–6233. doi:10.1021/bi0270384

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson E, Murphy B, Dunne T, Breen C, Rawlings B, Caffrey P (2010) Redesign of polyene macrolide glycosylation: engineered biosynthesis of 19-(O)-perosaminyl-amphoteronolide B. Chem Biol 17:174–182. doi:10.1016/j.chembiol.2010.01.007

    Article  CAS  PubMed  Google Scholar 

  • Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Mura S (2003) Complete genome sequence and comparative analysis of of the industrial micro-organism Streptomyces avermitilis. Nat Biotechnol 21:526–531. doi:10.1038/nbt820

    Article  PubMed  Google Scholar 

  • Janout V, Schell WA, Thevenin D, Yu Y, Perfect JR (2015) Taming amphotericin B. Bioconj Chem 26:2021–2014. doi:10.1021/acs.bioconjchem.5b00463

    Article  CAS  Google Scholar 

  • Jeon BJ, Kim JD, Han JW, Kim BS (2016) Antifungal activity of rimocidin and a new rimocidin derivative BU16 produced by Streptomyces mauvecolor BU16 and their effects on pepper anthracnose. J Appl Microbiol. doi:10.1111/jam.13071

    Google Scholar 

  • Jiang H, Wang Y-Y, Ran X-X, Fan W-M, Jiang X-H, Guan W-J, Li Y-Q (2013) Improvement of natamycin production by engineering of phosphopantetheinyl transferases in Streptomyces chattanoogensis L10. Appl Environ Microbiol 79(11):3346–3354. doi:10.1128/AEM.00099-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jørgensen H, Fjærvik E, Hakvåg S, Bruheim P, Bredholt H, Klinkenberg G, Ellingsen TE, Zotchev SB (2009a) Candicidin biosynthesis gene cluster is widely distributed among Streptomyces spp. isolated from the sediments and the neuston layer of the Trondheim fjord, Norway. Appl Environ Microbiol 75(10):3296–3303. doi:10.1128/AEM.02730-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jørgensen H, Degnes KF, Sletta H, Fjaervik E, Dikiy A, Herfindal L, Bruheim P, Klinkenberg G, Bredholt H, Nygård G, Døskeland SO, Ellingsen TE, Zotchev SB (2009b) Biosynthesis of macrolactam BE-14106 involves two distinct PKS systems and amino acid processing enzymes for generation of the aminoacyl starter unit. Chem Biol 16:1109–1121. doi:10.1016/j.chembiol.2009.09.014

    Article  PubMed  CAS  Google Scholar 

  • Jose PA, Jebakumar SRD (2013) Non-streptomycete actinomycetes nourish the current microbial antibiotic drug discovery. Front Microbiol 4:240. doi:10.3389/fmicb.2013.00240

    PubMed  PubMed Central  Google Scholar 

  • Keatinge-Clay AT (2007) A tylosin ketoreductase reveals how chirality is determined in polyketides. Chem Biol 14:898–908. doi:10.1016/j.chembiol.2007.07.009

    Article  CAS  PubMed  Google Scholar 

  • Keatinge-Clay AT (2016) Stereocontrol within polyketide assembly lines. Nat Prod Rep. doi:10.1039/c5np00092k

    PubMed  PubMed Central  Google Scholar 

  • Kells PM, Ouellet H, Santos-Aberturas J, Aparicio JF, Podust LM (2010) Structure of cytochrome P450 PimD suggests epoxidation of the polyene macrolide pimaricin occurs via a hydroperoxoferric intermediate. Chem Biol 17(8):841–851. doi:10.1016/j.chembiol.2010.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim BG, Lee MJ, Seo JY, Hwang YB, Lee MY, Han K, Sherman DH, Kim ES (2009) Identification of functionally clustered nystatin-like biosynthetic genes in a rare actinomycetes, Pseudonocardia autotrophica. J Ind Microbiol Biotechnol 36:1425–1434. doi:10.1007/s10295-009-0629-5

    Article  CAS  PubMed  Google Scholar 

  • Kim D-G, Moon K, Kim S-H, Park S-H, Park S, Lee SK, Oh K-B, Shin J, Oh D-C (2012) Bahamaolides A and B, antifungal polyene polyol macrolides from the marine actinomycete Streptomyces sp. J Nat Prod 75:959–967. doi:10.1021/np3001915

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Kim MK, Lee MJ, Won HJ, Choi SS, Kim ES (2015) Post-PKS Tailoring steps of a disaccharide-containing polyene NPP in Pseudonocardia autotrophica. PLoS one 10(4):e0123270. doi:10.1371/journal.pone.0123270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • King JD, Poon KKH, Webb NA, Anderson EM, McNally DJ, Brisson J-R, Messner P, Garavito RM, Lam JS (2009) The structural basis for catalytic function of GMD and RMD, two closely related enzymes from the GDP-d-rhamnose biosynthesis pathway. FEBS J 276:2686–2700. doi:10.1111/j.1742-4658.2009.06993.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komaki H, Izumikawa M, J-y U, Nakashima T, Khan ST, Takagi M, Shin-ya K (2009) Discovery of a pimaricin analogue JBIR-13, from Streptomyces bicolor NBRC 12746 as predicted by sequence analysis of type I polyketide synthase gene. Appl Microbiol Biotechnol 83:127–133. doi:10.1007/s00253-008-1849-8

    Article  CAS  PubMed  Google Scholar 

  • Komaki H, Ichikawa N, Hosoyama A, Fujita N, Igarashi Y (2015) Draft genome sequence of marine-derived Streptomyces sp. TP-A0873, a producer of a pyrrolizidine alkaloid bohemamine. Genome Announc 3(1):e00008–e00015. doi:10.1128/genomeA.00008-15

    PubMed  PubMed Central  Google Scholar 

  • Kong D, Lee M-J, Lin S, Kim E-S (2013) Biosynthesis and pathway engineering of antifungal polyene macrolides in actinomycetes. J Ind Microbiol Biotechnol 40:529–543. doi:10.1007/s10295-013-1258-6

    Article  CAS  PubMed  Google Scholar 

  • Kwan DH, Sun Y, Schulz F, Hong H, Popovic B, Sim-Stark JC, Haydock SF, Leadlay PF (2008) Prediction and manipulation of the stereochemistry of enoylreduction in modular polyketide synthases. Chem Biol 15:1231–1240. doi:10.1016/j.chembiol.2008.09.012

    Article  CAS  PubMed  Google Scholar 

  • Kwon HK, Kauffman CA, Jensen PR, Fenical W (2009) Marinisporolides, polyene polyol macrolides from a marine actinomycete of the new genus Marinispora. J Org Chem 74(2):675–684. doi:10.1021/jo801944d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labonte JW, Townsend CA (2013) Active site comparisons and catalytic mechanisms of the hot dog superfamily. Chem Rev 113:2182–2204. doi:10.1021/cr300169a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MJ, Kong D, Han KB, Sherman DH, Bai L, Deng Z, Lin S, Kim ES (2012) Structural analysis and biosynthetic engineering of a solubility-improved and less-hemolytic nystatin-like polyene in Pseudonocardia autotrophica. Appl Microbiol Biotechnol 95:157–168. doi:10.1007/s00253-012-3955-x

    Article  CAS  PubMed  Google Scholar 

  • Lei X, Kong L, Zhang C, Liu Q, Yao F, Zhang W, Zixin Deng Z, You D (2013) In vivo investigation of the substrate recognition capability and activity affecting amino acid residues of glycosyltransferase FscMI in the biosynthesis of candicidin. Mol BioSyst 9:422–430. doi:10.1039/C2MB25464F

    Article  CAS  PubMed  Google Scholar 

  • Lemke A, Kiderlin AF, Kayser O (2005) Amphotericin B. Appl Microbiol Biotechnol 68:151–162. doi:10.1007/s00253-005-1955-9

    Article  CAS  PubMed  Google Scholar 

  • Letek M, Mateos LM, Gil JA (2014) Antimicrobial compounds. In: Villa TG, Veiga-Crespo P (eds) Genetic analysis and manipulation as a way to produce more effective antifungal compounds. Springer Verlag, Berlin Heidelberg. doi:10.1007/978-3-642-40444-3_7

    Google Scholar 

  • Lin T-Y, Chin CR, Everitt AR, Clare S, Perreira JM, Savidis G, Aker AM, John SP, Sarlah D, Carreira EM, Elledge SJ, Kellam P, Brass AL (2013) Amphotericin B increases influenza A virus infection by preventing IFITM3-mediated restriction. Cell Rep 5:895–908. doi:10.1016/j.celrep.2013.10.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Zhou Y, Liu T, Deng Z (2015a) Poster 75. Society for Industrial Microbiology and Biotechnology meeting. In: A promising chassis derived from Streptomyces sp. FR-008 and its development for polyketide derived natural products heterologous overproduction system. Natural Product Discovery and Development in the Post Genomic Era, San Diego CA Jan 11–14 2015

    Google Scholar 

  • Liu SP, Yuan PH, Wan YY, Liu XF, Zhou ZX, Bu QT, Yu P, Jiang H, Li YQ (2015b) Generation of the natamycin analogues by gene engineering of natamycin biosynthetic genes in Streptomyces chattanoogensis L10. Microbiol Res 173:25–33. doi:10.1016/j.micres.2015.01.013

    Article  CAS  PubMed  Google Scholar 

  • López D, Fischbach MA, Chu F, Losick R, Kolter R (2008) Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. Proc Natl Acad Sci U S A 106(1):280–285. doi:10.1073/pnas.0810940106253_7474.docx

    Article  PubMed  PubMed Central  Google Scholar 

  • Magarvey NA, Haltli B, He M, Greenstein M, Hucul JA (2006) Biosynthetic pathway for mannopeptimycins, lipoglycopeptide antibiotics active against drug-resistant gram-positive pathogens. Antimicrob Agents Chemother 50(6):2167–2177. doi:10.1128/AAC.01545-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes MV, Recio E, Anton N, Guerra SM, Santos-Aberturas J, Martin JF, Aparicio JF (2007) Cholesterol oxidases act as signalling proteins for the biosynthesis of the polyene macrolide pimaricin. Chem Biol 14:279–290. doi:10.1016/j.chembiol.2007.01.010

    Article  CAS  PubMed  Google Scholar 

  • Mesa-Arango AC, Scorzoni L, Zaragoza O (2012) It only takes one to do many jobs: amphotericin B as antifungal and immunomodulatory drug. Front Microbiol 3:286. doi:10.3389/fmicb.2012.00286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy B, Anderson K, Borissow C, Caffrey P, Griffith G, Hearn J, Ibrahim O, Khan N, Lamburn N, Lee M, Pugh K, Rawlings B (2010) Isolation and characterisation of amphotericin B analogues and truncated intermediates produced by genetic engineering of Streptomyces nodosus. Org Biomolec Chem 8:3758–3770. doi:10.1039/b922074g

    Article  CAS  Google Scholar 

  • Nedal A, Sletta H, Brautaset T, Borgos SEF, Sekurova ON, Ellingsen TE, Zotchev SB (2007) Analysis of the mycosamine biosynthesis and attachment genes in the nystatin biosynthetic gene cluster of Streptomyces noursei ATCC 11455. Appl Environ Microbiol 73(22):7400–7407. doi:10.1128/AEM.01122-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nic Lochlainn L, Caffrey P (2009) Phosphomannose isomerase and phosphomannomutase gene disruptions in Streptomyces nodosus: impact on amphotericin biosynthesis and implications for glycosylation engineering. Metab Eng 11:40–47. doi:10.1016/j.ymben.2008.08.007

    Article  PubMed  CAS  Google Scholar 

  • Nishimura S, Tokukura M, Ochi J, Yoshida M, Kakeya H (2014) Balance between exocytosis and endocytosis determines the efficacy of sterol-targeting antibiotics. Chem Biol 21(12):1690–1699. doi:10.1016/j.chembiol.2014.10.014

    Article  CAS  PubMed  Google Scholar 

  • Ogita A, Fujita K-I, Tanaka T (2012) Enhancing effects on vacuole-targeting fungicidal activity of amphotericin B. Front Microbiol 3(100):1–8. doi:10.3389/fmicb.2012.00100

    Google Scholar 

  • Olano C, Garcia I, González A, Rodriguez A, Rozas D, Rubio J, Sánchez-Hidalgo M, Brana AF, Méndez C, Salas JA (2014) Activation and identification of five clusters for secondary metabolites in Streptomyces albus J1074. Microb Biotechnol 7(3):242–256. doi:10.1111/1751-7915.12116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paddon CJ, Keasling JD (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 12:355–367. doi:10.1038/nrmicro3240

    Article  CAS  PubMed  Google Scholar 

  • Palacios DS, Anderson TM, Burke MD (2007) A post-PKS oxidation of the amphotericin B skeleton predicted to be critical for channel formation is not required for potent antifungal activity. J Am Chem Soc 129:13804–13805. doi:10.1073/pnas.1015023108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palaniappan N, Alhamadsheh M, Reynolds KA (2008) cis2,3-Double bond of phosplactomycins is generated by a post-PKS tailoring enzyme. J Am Chem Soc 130:12236–12237. doi:10.1021/ja8044162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawlak J, Sowinski P, Borowski E, Gariboldi P (1995) Stereostructure of perimycin A. J Antibiot (Tokyo) 48:1034–1038

    Article  CAS  Google Scholar 

  • Payero TD, Vicente CM, Rumbero A, Barreales EG, Santos-Aberturas J, de Pedro A, Aparicio JF (2015) Functional analysis of filipin tailoring genes from Streptomyces filipinensis reveals alternative routes in filipin III biosynthesis and yields bioactive derivatives. Microb Cell Factories 14:114. doi:10.1186/s12934-015-0307-4

    Article  CAS  Google Scholar 

  • Perlova O, Gerth K, Kaiser O, Hans A, Müller R (2006) Identification and analysis of the chivosazol biosynthetic gene cluster from the myxobacterial model strain Sorangium cellulosum So ce56. J Biotechnol 121(2):174–191. doi:10.1016/j.jbiotec.2005.10.011

    Article  CAS  PubMed  Google Scholar 

  • Preobrazhenskaya MN, Olsufyeva EN, Tevyashova AN, Printsevskaya SS, Solovieva SE, Reznikova MI, Trenin AS, Galatenko OA, Treshalin ID, Pereverzeva ER, Mirchink EP, Zotchev SB (2010) Synthesis and study of the antifungal activity of new mono- and disubstituted derivatives of a genetically engineered polyene antibiotic 28,29-didehydronystatin A1(S44HP). J Antibiot (Tokyo) 63:55–64. doi:10.1038/ja.2009.118

    Article  CAS  Google Scholar 

  • Qi Z, Kang Q, Jiang C, Han M, Bai L (2015) Engineered biosynthesis of pimaricin derivatives with improved antifungal activity and reduced cytotoxicity. Appl Microbiol Biotechnol 99:6745–6752. doi:10.1007/s00253-015-6635-9

    Article  CAS  PubMed  Google Scholar 

  • Recio E, Colinas A, Rumbero A, Aparicio JF, Martin JF (2004) PI factor a novel quorum-sensing inducer elecits pimaricin production in Streptomyces natalensis. J Biol Chem 279:41586–41593. doi:10.1074/jbc.M402340200

    Article  CAS  PubMed  Google Scholar 

  • Reid R, Piagentini M, Rodriguez E, Ashley G, Viswanathan N, Carney J, Santi DV, Hutchinson CR, McDaniel R (2003) A model of structure and catalysis for ketoreductase domains in modular polyketide synthases. Biochemistry 42:72–79. doi:10.1021/bi0268706

    Article  CAS  PubMed  Google Scholar 

  • Rix U, Fischer C, Remsing LL, Rohr J (2002) Modification of post-PKS tailoring steps through combinatorial biosynthesis. Nat Prod Rep 19:542–580. doi:10.1039/B103920M

    Article  CAS  PubMed  Google Scholar 

  • Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943. doi:10.1038/nature04640

    Article  CAS  PubMed  Google Scholar 

  • Roethl E, Gassner M, Krenn BM, Romanovskaya-Romanko EA, Seper H, Romanova J, Nakowitsch S, Sturlan S, Wolschek M, Sirotkin A, Kiselev O, Muster T, Egorov A (2011) Antimycotic-antibiotic amphotericin B promotes influenza virus replication in cell culture. J Virol 85(21):11139–11145. doi:10.1128/JVI.00169-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolón M, Seco EM, Vega C, Nogal JJ, Escario JA, Gómez-Barrio A, Malpartida F (2006) Selective activity of polyene macrolides produced by genetically modified Streptomyces on Trypanosoma cruzi. Int J Antimicrob Agents 28(2):104–109. doi:10.1016/j.ijantimicag.2006.02.025

    Article  PubMed  CAS  Google Scholar 

  • Santos-Aberturas J, Engel J, Dickerhoff J, Dörr M, Rudroff F, Weisz K, Bornscheuer UT (2015) Exploration of the substrate promiscuity of biosynthetic tailoring enzymes as a new source of structural diversity for polyene macrolide antifungals. ChemCatChem 7(3):490–500. doi:10.1002/cctc.201402773

    Article  CAS  Google Scholar 

  • Schell U, Haydock SF, Kaja AL, Carletti I, Lill RE, Read E, Sheehan LS, Low L, Fernandez M-J, Grolle F, McArthur HAI, Sheridan RM, Leadlay PF, Wilkinson B, Gaisser S (2008) Engineered biosynthesis of hybrid macrolide polyketides containing D-angolosamine and D-mycaminose moieties. Org Biomol Chem 6:3315–3327. doi:10.1039/b807914e

    Article  CAS  PubMed  Google Scholar 

  • Schulze CJ, Donia MS, Siqueira-Neto JL, Ray D, Raskatov JA, Green RE, McKerrow JH, Fischbach MA, Linington RG (2015) Genome-directed lead discovery: biosynthesis, structure elucidation, and biological evaluation of two families of polyene macrolactams against Trypanosoma brucei. ACS Chem Biol 10(10):2373–2381. doi:10.1021/acschembio.5b00308

    Article  CAS  PubMed  Google Scholar 

  • Seco EM, Miranzo D, Nieto C, Malpartida F (2010) The pcsA gene from Streptomyces diastaticus var 108 encodes a polyene carboxamide synthase with broad substrate specificity for polyene amide biosynthesis. Appl Microbiol Biotechnol 85:1797–1807. doi:10.1007/s00253-009-2193-3

    Article  CAS  PubMed  Google Scholar 

  • Seipke RF, Barke J, Brearley C, Hill L, Yu DW, Goss RJ, Hutchings MI (2011a) A single Streptomyces symbiont makes multiple antifungals to support the fungus farming ant Acromyrmex octospinosus. PLoS one 6(8):e22028. doi:10.1371/journal.pone.0022028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seipke RF, Crossman L, Drou N, Heavens D, Bibb MJ, Caccamo M, Hutchings MI (2011b) Draft genome sequence of Streptomyces strain S4, a symbiont of the leaf-cutting ant Acromyrmex octospinosus. J Bacteriol 193(16):4270–4271. doi:10.1128/JB.05275-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seipke RF, Grüschow S, Goss RJM, Hutchings MI (2012) Isolating antifungals from fungus-growing ant symbionts using a genome-guided chemistry approach. Methods Enzymol 517:47–70. doi:10.1016/B978-0-12-404634-4.00003-6

    Article  CAS  PubMed  Google Scholar 

  • Siskos AP, Baerga-Ortiz A, Bali S, Stein V, Mamdani H, Spiteller D, Popvic B, Spencer JB, Staunton J, Weissman KJ, Leadlay PF (2005) Molecular basis of Celmer’s rules: stereochemistry of catalysis by isolated ketoreductase domains from modular polyketide synthases. Chem Biol 12:1145–1153. doi:10.1016/j.chembiol.2005.08.017

    Article  CAS  PubMed  Google Scholar 

  • Sletta H, Borgos SEF, Bruheim P, Sekurova ON, Grasdalen H, Aune R, Ellingsen TE, Zotchev SB (2005) Nystatin biosynthesis and transport: nysH and nysG genes encoding a putative ABC transporter system in Streptomyces noursei ATCC 11455 are required for efficient conversion of 10-deoxynystatin to nystatin. Antimicrob Agents Chemother 49:4576–4583. doi:10.1128/AAC.49.11.4576-4583.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith NW, Annunziata O, Dzyuba SV (2009) Amphotericin B interactions with soluble oligomers of amyloid Aβ1-42 peptide. Bioorg Med Chem 17(6):2366–2370. doi:10.1016/j.bmc.2009.02.016

    Article  CAS  PubMed  Google Scholar 

  • Sowinski P, Gariboldi P, Czerwinski A, Borowski E (1989a) The structure of vacidin A, an aromatic heptaene macrolide antibiotic. I. Complete assignment of the 1H NMR spectrum and geometry of the polyene chromophore. J Antibiot (Tokyo) 62(9):1631–1638

    Article  Google Scholar 

  • Sowinski P, Gariboldi P, Pawlak JK, Borowski E (1989b) The structure of vacidin A, an aromatic heptaene macrolide antibiotic. II. Stereochemistry of the antibiotic. J Antibiot (Tokyo) 62(9):1639–1642

    Article  Google Scholar 

  • Sowinski P, Pawlak J, Borowski E, Gariboldi P (1995) Stereostructure of gedamycin. Pol J Chem 69:213–217

    CAS  Google Scholar 

  • Stephens N, Rawlings B, Caffrey P (2012) Streptomyces nodosus host strains optimized for polyene glycosylation engineering. Biosci Biotechnol Biochem 76:384–387. doi:10.1271/bbb.110673

    Article  CAS  PubMed  Google Scholar 

  • Stephens N, Rawlings B, Caffrey P (2013) Versatility of enzymes catalyzing late steps in polyene 67-121C biosynthesis. Biosci Biotechnol Biochem 77:880–883. doi:10.1271/bbb.120961

    Article  CAS  PubMed  Google Scholar 

  • Svahn S, Chryssanthou E, Olsen B, Bohlin L, Göransson U (2015) Penicillium nalgiovense Laxa isolated from Antarctica is a new source of the antifungal metabolite amphotericin B. Fungal Biol Biotechnol 2:1–8. doi:10.1186/s40694-014-0011-x

    Article  Google Scholar 

  • Sweeney P, Murphy CD, Caffrey P (2016) Exploiting the genome sequence of Streptomyces nodosus for enhanced antibiotic production. Appl Microbiol Biotechnol 100:1285–1295. doi:10.1007/s00253-015-7060-9

    Article  CAS  Google Scholar 

  • Szlinder-Richert J, Mazerski J, Cybulska B, Grzybowska J, Borowski E (2001) MFAME, N-methyl-N-D-fructosyl amphotericin B methyl ester, a new amphotericin B derivative of low toxicity: relationship between self-association and effects on red blood cells. Biochim Biophys Acta 1528(1):15–24. doi:10.1016/S0304-4165(01)00166-0

    Article  CAS  PubMed  Google Scholar 

  • Szpilman AM, Cereghetti DM, Wurtz NR, Manthorpe JM, Carreira EM (2008) Synthesis of 35-deoxyamphotericin B methyl ester: a strategy for molecular editing. Angew Chemie Int Ed Engl 47:4335–4338. doi:10.1002/anie.200800589

    Article  CAS  Google Scholar 

  • Szwarc K, Szczeblewski P, Sowiński P, Borowski E, Pawlak J (2015a) The stereostructure of candicidin D. J Antibiot (Tokyo) 68(8):504–510. doi:10.1038/ja.2015.17

    Article  CAS  Google Scholar 

  • Szwarc K, Szczeblewski P, Sowiński P, Borowski E, Jan Pawlak J (2015b) The structure, including stereochemistry, of levorin A1. Magn Reson Chem 53:479–484. doi:10.1002/mrc.4229

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Liu X, Peng J, Tang Y, Zhang Y (2015) Genome sequence and genome mining of a marine-derived antifungal bacterium Streptomyces sp. M10. Appl Microbiol Biotechnol 99:2763–2772. doi:10.1007/s00253-015-6453-0

    Article  CAS  PubMed  Google Scholar 

  • Tevyashova AN, Olsufyeva EN, Solovieva SE, Printsevskaya SS, Reznikova MI, Trenin AS, Galatenko OA, Treshalin ID, Pereverzeva ER, Mirchink EP, Isakova EB, Zotchev SB, Preobrazhenskaya MN (2013) Structure-antifungal activity relationships of polyene antibiotics of the amphotericin B group. Antimicrob Agents Chemother 57(8):3815–3822. doi:10.1128/AAC.00270-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tietz JI, Mitchell DA (2015) Using genomics for natural product structure elucidation. Curr Top Med Chem:16. doi:10.2174/1568026616666151012111439

  • Valenzano CR, Lawson RJ, Chen AY, Khosla C, Cane DE (2009) The biochemical basis for stereochemical control in polyketide biosynthesis. J Am Chem Soc 131(51):18501–18511. doi:10.1021/ja908296m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vergnolle O, Hahn F, Baerga-Ortiz A, Leadlay PF, Andexer JN (2011) Stereoselectivity of isolated dehydratase domains of the borrelidin polyketide synthase: implications for cis double bond formation. Chembiochem 12:1011–1014. doi:10.1002/cbic.20110001

    Article  CAS  PubMed  Google Scholar 

  • Vincent BM, Lancaster AK, Scherz-Shouval R, Whitesell L, Lindquist S (2013) Fitness trade-offs restrict the evolution of resistance to amphotericin B. PLoS Biol 11(10):e1001692. doi:10.1371/journal.pbio.1001692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volokhan O, Sletta H, Ellingsen TE, Zotchev SB (2006) Characterization of the P450 monooxygenase NysL, responsible for C-10 hydroxylation during biosynthesis of the polyene macrolide antibiotic nystatin in Streptomyces noursei. Appl Environ Microbiol 72(4):2514-2519. doi:10.1128/AEM.72.4.2514-2519.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weissman KJ, Timoney M, Bycroft M, Grice P, Hanefeld U, Staunton J, Leadlay PF (1997) The molecular basis of Celmer’s rules: the stereochemistry of the condensation step in chain extension on the erythromycin polyketide synthase. Biochemistry 36(45):13849–13855. doi:10.1021/bi971566b

    Article  CAS  PubMed  Google Scholar 

  • Wilcock BC, Endo MM, Uno BE, Burke MD (2013) C2′-OH of amphotericin B plays an important role in binding the primary sterol of human cells but not yeast cells. J Am Chem Soc 135:8488–8491. doi:10.1021/ja403255s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright JJ, Greeves D, Mallams AK, Picker DH (1977) Structural elucidation of heptaene macrolide antibiotics 67-121A and 67-121C. J Chem Soc Chem Commun 1977:710–712. doi:10.1039/C39770000710

    Article  Google Scholar 

  • Yamamoto T, Umegawa Y, Tsuchikawa H, Matsumori N, Hanashima S, Murata M, Haser R, Rawlings BJ, Caffrey P (2015) Role of polyol moiety of amphotericin B in ion channel formation and sterol selectivity in bilayer membrane. Bioorg Med Chem 23:5782–5788. doi:10.1016/j.bmc.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Li M, Wilkins J, Ding S, Swartz TH, Esposito AM, Zheng Y-M, Freed EO, Liang C, Chen BK, Liu S-L (2015) IFITM proteins restrict HIV-1 infection by antagonizing the envelope glycoprotein. Cell Rep 13:145–156. doi:10.1016/j.celrep.2015.08.055

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Moretti R, Jiang J, Thorson JS (2008) The in vitro characterisation of polyene glycosyltransferases AmphDI and NysDI. Chembiochem 9:2506–2514. doi:10.1002/cbic.200800349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Zhao Z, Li H, Chen X-L, Deng Z, Bai L, Pang X (2015) Production of the antibiotic FR008/candicidin in Streptomyces sp. FR008 is co-regulated by two regulators, FscRI and FscRIV, from different transcription factor families. Microbiology 161:539–552. doi:10.1099/mic.0.000033

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Piasecki SK, Keatinge-Clay AT (2013) Structural studies of an A2-type modular polyketide synthase ketoreductase reveal features controlling α-substituent stereochemistry. ACS Chem Biol 8(9):1964–1971. doi:10.1021/cb400161g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zidovetzki R, Levitan I (2007) Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta 1768(6):1311–1324. doi:10.1016/j.bbamem.2007.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zielinksi J, Jereczek E, Sowlinski P, Falowski L, Rudowski A, Borowski E (1979) The structure of a novel sugar component of polyene macrolide antibiotics: 2, 6 dideoxy-L-ribohexopyranose. J Antibiot (Tokyo) 32(6):565–568

    Article  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratory has been supported by Science Foundation Ireland, grant number 09/RFP/GEN2132.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Caffrey.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caffrey, P., De Poire, E., Sheehan, J. et al. Polyene macrolide biosynthesis in streptomycetes and related bacteria: recent advances from genome sequencing and experimental studies. Appl Microbiol Biotechnol 100, 3893–3908 (2016). https://doi.org/10.1007/s00253-016-7474-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7474-z

Keywords

Navigation