Skip to main content

Advertisement

Log in

Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The beneficial effect of microbially induced carbonate precipitation on building materials has been gradually disclosed in the last decade. After the first applications of on historical stones, promising results were obtained with the respect of improved durability. An extensive study then followed on the application of this environmentally friendly and compatible material on a currently widely used construction material, concrete. This review is focused on the discussion of the impact of the two main applications, bacterial surface treatment and bacteria based crack repair, on concrete durability. Special attention was paid to the choice of suitable bacteria and the metabolic pathway aiming at their functionality in concrete environment. Interactions between bacterial cells and cementitious matrix were also elaborated. Furthermore, recommendations to improve the effectiveness of bacterial treatment are provided. Limitations of current studies, updated applications and future application perspectives are shortly outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achal V, Mukerjee A, Reddy MS (2013) Biogenic treatment improves the durability and remediates the cracks of concrete structures. Constr Build Mater 48:1–5. doi:10.1016/j.conbuildmat.2013.06.061

    Article  Google Scholar 

  • Achal V, Mukherjee A (2015) A review of microbial precipitation for sustainable construction. Constr Build Mater 93:1224–1235. doi:10.1016/j.conbuildmat.2015.04.051

    Article  Google Scholar 

  • Achal V, Mukherjee A, Basu PC, Reddy MS (2009) Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. J Ind Microbiol Biotechnol 36(3):433–438. doi:10.1007/s10295-008-0514-7

    Article  CAS  PubMed  Google Scholar 

  • Achal V, Mukherjee A, Goyal S, Reddy MS (2012) Corrosion prevention of reinforced concrete with microbial calcite precipitation. ACI Mater J 109(2):157–163

    Google Scholar 

  • Achal V, Pan XL, Ozyurt N (2011) Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation. Ecol Eng 37(4):554–559. doi:10.1016/j.ecoleng.2010.11.009

    Article  Google Scholar 

  • Andalib R, Abd Majid MZ, Keyvanfar A, Talaiekhozan A, Hussin MW, Shafaghat A, Zin RM, Lee CT, Fulazzaky MA, Ismail HH (2014) Durability improvement assessment in different high strength bacterial structural concrete grades against different types of acids. Sadhana-Acad Proc Eng Sci 39(6):1509–1522

    CAS  Google Scholar 

  • Bang SS, Galinat JK, Ramakrishnan V (2001) Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme Microb Technol 28(4–5):404–409. doi:10.1016/s0141-0229(00)00348-3

    Article  CAS  PubMed  Google Scholar 

  • Basaran Z (2013) Biomineralization in cement based materials: inoculation of vegetative cells. PhD thesis University of Texas, Austin, US

    Google Scholar 

  • Benini S, Gessa C, Ciurli S (1996) Bacillus pasteurii urease: a heteropolymeric enzyme with a binuclear nickel active site. Soil Biol Biochem 28(6):819–821. doi:10.1016/0038-0717(96)00017-x

    Article  CAS  Google Scholar 

  • Boquet E, Boronat A, Ramoscor A (1973) Production of calcite (calcium-carbonate) crystals by soil bacteria is a general phenomenon. Nature 246(5434):527–529. doi:10.1038/246527a0

    Article  Google Scholar 

  • Bundur ZB, Kirisits MJ, Ferron RD (2015) Biomineralized cement-based materials: impact of inoculating vegetative bacterial cells on hydration and strength. Cem Concr Res 67:237–245. doi:10.1016/j.cemconres.2014.10.002

    Article  Google Scholar 

  • Castanier S, Le Metayer-Levrel G, Perthuisot JP (1999) Ca-carbonates precipitation and limestone genesis—the microbiogeologist point of view. Sediment Geol 126(1–4):9–23. doi:10.1016/s0037-0738(99)00028-7

    CAS  Google Scholar 

  • Chahal N, Siddique R (2013) Permeation properties of concrete made with fly ash and silica fume: influence of ureolytic bacteria. Constr Build Mater 49:161–174. doi:10.1016/j.conbuildmat.2013.08.023

    Article  Google Scholar 

  • Chahal N, Siddique R, Rajor A (2012) Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete. Constr Build Mater 28(1):351–356. doi:10.1016/j.conbuildmat.2011.07.042

    Article  Google Scholar 

  • Cheng L, Cord-Ruwisch R (2012) In situ soil cementation with ureolytic bacteria by surface percolation. Ecol Eng 42:64–72. doi:10.1016/j.ecoleng.2012.01.013

    Article  Google Scholar 

  • Da Silva FB, De Belie N, Boon N, Verstraete W (2015) Production of non-axenic ureolytic spores for self-healing concrete applications. Constr Build Mater 93:1034–1041. doi:10.1016/j.conbuildmat.2015.05.049

    Article  Google Scholar 

  • De Belie N (2010) Microorganisms versus stony materials: a love-hate relationship. Mater Struct 43(9):1191–1202. doi:10.1617/s11527-010-9654-0

    Article  Google Scholar 

  • De Belie N, De Muynck W (2009) Crack repair in concrete using biodeposition, Proc 2nd Int Conf Concr Repair, Rehab, Retrofitting 291-292

  • De Belie N, Monteny J, Beeldens A, Vincke E, Van Gemert D, Verstraete W (2004) Experimental research and prediction of the effect of chemical and biogenic sulfuric acid on different types of commercially produced concrete sewer pipes. Cem Concr Res 34(12):2223–2236. doi:10.1016/j.cemconres.2004.02.015

    Article  Google Scholar 

  • de la Rosa JPM, Warke PA, Smith BJ (2013) Lichen-induced biomodification of calcareous surfaces: bioprotection versus biodeterioration. Prog Phys Geogr 37(3):325–351. doi:10.1177/0309133312467660

    Article  Google Scholar 

  • De Muynck W, Cox K, De Belle N, Verstraete W (2008a) Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr Build Mater 22(5):875–885. doi:10.1016/j.conbuildmat.2006.12.011

    Article  Google Scholar 

  • De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36(2):118–136. doi:10.1016/j.ecoleng.2009.02.006

    Article  Google Scholar 

  • De Muynck W, Debrouwer D, De Belie N, Verstraete W (2008b) Bacterial carbonate precipitation improves the durability of cementitious materials. Cem Concr Res 38(7):1005–1014. doi:10.1016/j.cemconres.2008.03.005

    Article  Google Scholar 

  • De Muynck W, Leuridan S, Van Loo D, Verbeken K, Cnudde V, De Belie N, Verstraete W (2011) Influence of pore structure on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Appl Environ Microbiol 77(19):6808–6820. doi:10.1128/aem.00219-11

    Article  PubMed  PubMed Central  Google Scholar 

  • De Muynck W, Verbeken K, De Belie N, Verstraete W (2010b) Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecol Eng 36(2):99–111. doi:10.1016/j.ecoleng.2009.03.025

    Article  Google Scholar 

  • De Muynck W, Verbeken K, De Belie N, Verstraete W (2013) Influence of temperature on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Appl Microbiol Biotechnol 97(3):1335–1347. doi:10.1007/s00253-012-3997-0

    Article  PubMed  Google Scholar 

  • DeJong JT, Fritzges MB, Nusslein K (2006) Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenviron Eng 132(11):1381–1392. doi:10.1061/(asce)1090-0241(2006)132:11(1381)

    Article  CAS  Google Scholar 

  • DeJong JT, Mortensen BM, Martinez BC, Nelson DC (2010) Bio-mediated soil improvement. Ecol Eng 36(2):197–210. doi:10.1016/j.ecoleng.2008.12.029

    Article  Google Scholar 

  • Dhami NK, Reddy MS, Mukherjee A (2012) Improvement in strength properties of ash bricks by bacterial calcite. Ecol Eng 39:31–35. doi:10.1016/j.ecoleng.2011.11.011

    Article  Google Scholar 

  • Dick J, De Windt W, De Graef B, Saveyn H, Van der Meeren P, De Belie N, Verstraete W (2006) Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 17(4):357–367. doi:10.1007/s10532-005-9006-x

    Article  CAS  PubMed  Google Scholar 

  • Ersan YC, Da Silva FB, Boon N, Verstraete W, De Belie N (2015d) Screening of bacteria and concrete compatible protection materials. Constr Build Mater 88:196–203. doi:10.1016/j.conbuildmat.2015.04.027

    Article  Google Scholar 

  • Ersan YC, de Belie N, Boon N (2015a) Microbially induced CaCO3 precipitation through denitrification: an optimization study in minimal nutrient environment. Biochem Eng J 101:108–118. doi:10.1016/j.bej.2015.05.006

    Article  CAS  Google Scholar 

  • Ersan YC, Gruyaert E, Louis G, Lors C, De Belie N, Boon N (2015b) Self-protected nitrate reducing culture for intrinsic repair of concrete cracks. Front Microbiol:6. doi:10.3389/fmicb.2015.01228

  • Ersan YC, Verbruggen H, De Graeve I, Verstraete W, De Belie N, Boon N (2015c) Nitrate reducing CaCO3 precipitating bacteria survive in mortar and inhibit steel corrosion. Cem Concr Res (Accepted with minor revisions)

  • Farmani F, Bonakdarpour B, Ramezanianpour AA (2015) pH reduction through amendment of cement mortar with silica fume enhances its biological treatment using bacterial carbonate precipitation. Mater Struct 48(10):3205–3215. doi:10.1617/s11527-014-0391-7

    Article  CAS  Google Scholar 

  • Ferris FG, Phoenix V, Fujita Y, Smith RW (2004) Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20 degrees C in artificial groundwater. Geochim Cosmochim Acta 68(8):1701–1710. doi:10.1016/s0016-7037(00)00503-9

    Article  CAS  Google Scholar 

  • Frankel RB, Bazylinski DA (2003) Biologically induced mineralization by bacteria. In: Dove PM, DeYoreo JJ, Weiner S (eds) Biominer Rev Miner Geochem, vol 54, pp 95–114

  • Frankel RB, Bazylinski DA, Schuler D (1998) Biomineralization of magnetic iron minerals in bacteria. Supramol Sci 5(3–4):383–390. doi:10.1016/s0968-5677(98)00036-4

    Article  CAS  Google Scholar 

  • Ghosh P, Mandal S, Chattopadhyay BD, Pal S (2005) Use of microorganism to improve the strength of cement mortar. Cem Concr Res 35(10):1980–1983. doi:10.1016/j.cemconres.2005.03.005

    Article  CAS  Google Scholar 

  • Ghosh S, Biswas M, Chattopadhyay BD, Mandal S (2009) Microbial activity on the microstructure of bacteria modified mortar. Cem Concr Compos 31(2):93–98. doi:10.1016/j.cemconcomp.2009.01.001

    Article  CAS  Google Scholar 

  • Grabiec AM, Klama J, Zawal D, Krupa D (2012) Modification of recycled concrete aggregate by calcium carbonate biodeposition. Constr Build Mater 34:145–150. doi:10.1016/j.conbuildmat.2012.02.027

    Article  Google Scholar 

  • Gutierrez-Padilla MGD, Bielefeldt A, Ovtchinnikov S, Hernandez M, Silverstein J (2010) Biogenic sulfuric acid attack on different types of commercially produced concrete sewer pipes. Cem Concr Res 40(2):293–301. doi:10.1016/j.cemconres.2009.10.002

    Article  CAS  Google Scholar 

  • Hammes F, Boon N, de Villiers J, Verstraete W, Siciliano SD (2003) Strain-specific ureolytic microbial calcium carbonate precipitation. Appl Environ Microbiol 69(8):4901–4909. doi:10.1128/aem.69.8.4901-4909.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harkes MP, van Paassen LA, Booster JL, Whiffin VS, van Loosdrecht MCM (2010) Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecol Eng 36(2):112–117. doi:10.1016/j.ecoleng.2009.01.004

    Article  Google Scholar 

  • Hudon E, Mirza S, Frigon D (2011) Biodeterioration of concrete sewer pipes: state of the art and research needs. J Pipeline Syst Eng Pract 2(2):42–52. doi:10.1061/(asce)ps.1949-1204.0000072

    Article  Google Scholar 

  • Jayakumar S, Saravanane R (2010) Biodeterioration of coastal concrete structures by marine green algae. Int J Civil Eng 8(4):352–361

    Google Scholar 

  • Jimenez-Lopez C, Jroundi F, Pascolini C, Rodriguez-Navarro C, Pinar-Larrubia G, Rodriguez-Gallego M, Gonzalez-Munoz MT (2008) Consolidation of quarry calcarenite by calcium carbonate precipitation induced by bacteria activated among the microbiota inhabiting the stone. Int Biodeterior Biodegrad 62(4):352–363. doi:10.1016/j.ibiod.2008.03.002

    Article  CAS  Google Scholar 

  • Jimenez-Lopez C, Rodriguez-Navarro C, Pinar G, Carrillo-Rosua FJ, Rodriguez-Gallego M, Gonzalez-Munoz MT (2007) Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone. Chemosphere 68(10):1929–1936. doi:10.1016/j.chemosphere.2007.02.044

    Article  CAS  PubMed  Google Scholar 

  • Jonkers HM, Schlangen E (2007) Self-healing of cracked concrete: a bacterial approach, vol 1–3,

  • Jonkers HM, Schlangen E (2008a) Properties and micro-structural analysis of organic compound-enriched self-healing concrete, Int Conf Microstruct Related Durab Cem Compos p 243–252

  • Jonkers HM, Schlangen E (2008b) In: Walraven, Stoelhorst (eds) Development of a bacteria-based self healing concrete in tailor made concrete structutres. Taylor and Francis Group, London

    Google Scholar 

  • Jonkers HM, Schlangen E (2009) A two component bacteria-based self-healing concrete, Concr Repair Rehab Retrofit II, 215–220.

  • Jonkers HM, Thijssen A, Muyzer G, Copuroglu O, Schlangen E (2010) Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol Eng 36(2):230–235. doi:10.1016/j.ecoleng.2008.12.036

    Article  Google Scholar 

  • Kalagri A, Miltiadou-Fezans A, Vintzileou E (2010) Design and evaluation of hydraulic lime grouts for the strengthening of stone masonry historic structures. Mater Struct 43(8):1135–1146. doi:10.1617/s11527-009-9572-1

    Article  CAS  Google Scholar 

  • Karatas I (2008) Microbiological improvement of the physical properties of soils. PhD thesis(Arizona State University, US)

  • Konhauser KO (1998) Diversity of bacterial iron mineralization. Earth-Sci Rev 43(3–4):91–121. doi:10.1016/s0012-8252(97)00036-6

    Article  CAS  Google Scholar 

  • Krishnapriya S, Babu DLV, Arulraj GP (2015) Isolation and identification of bacteria to improve the strength of concrete. Microbiol Res 174:48–55. doi:10.1016/j.micres.2015.03.009

    Article  CAS  PubMed  Google Scholar 

  • Kumar VR, Bhuvaneshwari B, Maheswaran S, Palani GS, Ravisankar K, Iyer NR (2011) An overview of techniques based on biomimetics for sustainable development of concrete. Current Sci 101(6):741–747

    CAS  Google Scholar 

  • Le Metayer-Levrel G, Castanier S, Orial G, Loubiere JF, Perthuisot JP (1999) Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sediment Geol 126(1–4):25–34. doi:10.1016/s0037-0738(99)00029-9

    Article  Google Scholar 

  • Mansch R, Beck E (1998) Biodeterioration of natural stone with special reference to nitrifying bacteria. Biodegrad 9(1):47–64. doi:10.1023/a:1008381525192

    Article  CAS  Google Scholar 

  • Moropoulou A, Kouloumbi N, Haralampopoulos G, Konstanti A, Michailidis P (2003) Criteria and methodology for the evaluation of conservation interventions on treated porous stone susceptible to salt decay. Prog Organ Coat 48(2–4):259–270. doi:10.1016/s0300-9440(03)00110-3

    Article  CAS  Google Scholar 

  • Nosouhian F, Mostofinejad D, Hasheminejad H (2015) Influence of biodeposition treatment on concrete durability in a sulphate environment. Biosyst Eng 133:141–152. doi:10.1016/j.biosystemseng.2015.03.008

    Article  Google Scholar 

  • Okwadha GDO, Li J (2010) Optimum conditions for microbial carbonate precipitation. Chemosphere 81(9):1143–1148. doi:10.1016/j.chemosphere.2010.09.066

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Park YM, Chun WY, Kim WJ, Ghim SY (2010) Calcite-forming bacteria for compressive strength improvement in mortar. J Microbiol Biotechnol 20(4):782–788. doi:10.4014/jmb.0911.11015

    CAS  PubMed  Google Scholar 

  • Pei RT, Liu J, Wang SS (2015) Use of bacterial cell walls as a viscosity-modifying admixture of concrete. Cem Concr Compos 55:186–195. doi:10.1016/j.cemconcomp.2014.08.007

    Article  CAS  Google Scholar 

  • Pei RT, Liu J, Wang SS, Yang MJ (2013) Use of bacterial cell walls to improve the mechanical performance of concrete. Cem Concr Compos 39:122–130. doi:10.1016/j.cemconcomp.2013.03.024

    Article  CAS  Google Scholar 

  • Piervittori R, Favero-Longo SE, Gazzano C (2009) Lichens and biodeterioration of stonework: a review. Chimica Oggi-Chem Today 27(6):8–11

    CAS  Google Scholar 

  • Qian CX, Wang JY, Wang RX, Cheng L (2009) Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii. Mater Sci Eng C-Biomim Supramol Syst 29(4):1273–1280. doi:10.1016/j.msec.2008.10.025

    Article  CAS  Google Scholar 

  • Qiu JS, Tng DQS, Yang EH (2014) Surface treatment of recycled concrete aggregates through microbial carbonate precipitation. Constr Build Mater 57:144–150. doi:10.1016/j.conbuildmat.2014.01.085

    Article  Google Scholar 

  • Ramachandran SK, Ramakrishnan V, Bang SS (2001) Remediation of concrete using micro-organisms. ACI Mater J 98(1):3–9

    CAS  Google Scholar 

  • Ramakrishnan V, Ramesh KP, Bang SS (2001) Bacterial concrete. In: Wilson AR, Asanuma H (eds) Smart materials. Proc Soc Photo-Optical Instrum Eng (Spie), vol 4234, pp 168–176

  • Revertegat E, Richet C, Gegout P (1992) Effect of pH on the durability of cement pastes. Cem Concr Res 22(2–3):259–272. doi:10.1016/0008-8846(92)90064-3

    Article  CAS  Google Scholar 

  • Rodriguez-Navarro C, Rodriguez-Gallego M, Ben Chekroun K, Gonzalez-Munoz MT (2003) Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl Environ Microbiol 69(4):2182–2193. doi:10.1128/aem.69.4.2182-2193.2003

  • Sarode DD, Mukherjee A (2009) Microbial precipitation for repairs of concrete structures. Concr Sol - Chapter 33 ISBN: 978–0-415-55082-6. CRC Press

  • Scrivener K, De Belie N (2013) Bacteriogenic sulfuric acid attack of cementitious materials in sewage systems. In: Alexander M, Bertron A, De Belie N (eds) Performance of cement-based materials in aggressive aqueous environments. RILEM State-of-the-Art Reports, vol 10. Springer, Netherlands, pp. 305–318

    Chapter  Google Scholar 

  • Setlow P (1994) Mechanisms which contribute to the long-term survival of spores of Bacillus species. J Appl Bacteriol 76:S49–S60. doi:10.1111/j.1365-2672.1994.tb04357.x

    Article  Google Scholar 

  • Siddique R, Chahal NK (2011) Effect of ureolytic bacteria on concrete properties. Constr Build Mater 25(10):3791–3801. doi:10.1016/j.conbuildmat.2011.04.010

    Article  Google Scholar 

  • Silva FB (2015) Up-scaling the production of bacteria for self-healing concrete application. PhD thesis Ghent University, Ghent, Belgium

    Google Scholar 

  • Soleimani S, Isgor OB, Ormeci B (2013b) Resistance of biofilm-covered mortars to microbiologically influenced deterioration simulated by sulfuric acid exposure. Cem Concr Res 53:229–238. doi:10.1016/j.cemconres.2013.06.016

    Article  CAS  Google Scholar 

  • Soleimani S, Ormeci B, Isgor OB (2013a) Growth and characterization of Escherichia coli DH5 alpha biofilm on concrete surfaces as a protective layer against microbiologically influenced concrete deterioration (MICD). Appl Microbiol Biotechnol 97(3):1093–1102. doi:10.1007/s00253-012-4379-3

    Article  CAS  PubMed  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry, chemical equilibria and rates in natural waters, 3rd edn. John Wiley & Sons, Inc, New York, 1022p

  • Van Lancker B (2013) Consolidation of natural stone using microorganisms and nanoparticles. Master Thesis Ghent Unversity, Ghent, Belgium

    Google Scholar 

  • Van Paassen LA, Daza CM, Staal M, Sorokin DY, van der Zon W, van Loosdrecht MCM (2010) Potential soil reinforcement by biological denitrification. Ecol Eng 36(2):168–175. doi:10.1016/j.ecoleng.2009.03.026

    Article  Google Scholar 

  • Van Tittelboom K, De Belie N, De Muynck W, Verstraete W (2010) Use of bacteria to repair cracks in concrete. Cem Concr Res 40(1):157–166. doi:10.1016/j.cemconres.2009.08.025

    Article  Google Scholar 

  • Verbaendert I, Boon N, De Vos P, Heylen K (2011) Denitrification is a common feature among members of the genus Bacillus. Syst Appl Microbiol 34(5):385–391. doi:10.1016/j.syapm.2011.02.003

    Article  CAS  PubMed  Google Scholar 

  • Vintzileou E, Miltiadou-Fezans A (2008) Mechanical properties of three-leaf stone masonry grouted with ternary or hydraulic lime-based grouts. Eng Struct 30(8):2265–2276. doi:10.1016/j.engstruct.2007.11.003

    Article  Google Scholar 

  • Vivar I, Borrego S, Ellis G, Moreno DA, Garcia AM (2013) Fungal biodeterioration of color cinematographic films of the cultural heritage of Cuba. Int Biodeterior Biodegrad 84:372–380. doi:10.1016/j.ibiod.2012.05.021

    Article  CAS  Google Scholar 

  • Wang JY (2013) Self-healing concrete by means of immobilized carbonate precipitating bacteria. PhD thesis Ghent University, Ghent, Belgium

    Google Scholar 

  • Wang JY, Van Tittelboom K, De Belie N, Verstraete W (2010) Potential of applying bacteria to heal cracks in concrete. In: Proc of the 2nd Int Conf Sustain Constr Mater Technol. Ancona, Italy, pp. 1807–1818

  • Wang JY, Van Tittelboom K, De Belie N, Verstraete W (2012a) Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Constr Build Mater 26(1):532–540. doi:10.1016/j.conbuildmat.2011.06.054

  • Wang JY, De Belie N, Verstraete W (2012b) Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J Ind Microbiol Biotechnol 39(4):567–577. doi:10.1007/s10295-011-1037-1

    Article  CAS  PubMed  Google Scholar 

  • Wang JY, Soens H, Verstraete W, De Belie N (2014a) Self-healing concrete by use of microencapsulated bacterial spores. Cem Concr Res 56:139–152. doi:10.1016/j.cemconres.2013.11.009

  • Wang JY, Snoeck D, Van Vlierberghe S, Verstraete W, De Belie N (2014b) Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. Constr Build Mater 68:110–119. doi:10.1016/j.conbuildmat.2014.06.018

  • Wang JY, Dewanckele J, Cnudde V, Van Vlierberghe S, Verstraete W, De Belie N (2014c) X-ray computed tomography proof of bacterial-based self-healing in concrete. Cem Concr Compos 53:289–304. doi:10.1016/j.cemconcomp.2014.07.014

    Article  CAS  Google Scholar 

  • Wang JY, Mignon A, Snoeck D, Wiktor V, Van Vliergerghe S, Boon N, De Belie N (2015) Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing. Front Microbiol 6 doi:10.3389/fmicb.2015.01088

  • Whiffin VS (2004) Microbial CaCO3 precipitation for the production of biocement. School of Biological Sciences and Biotechnology, Murdoch University, Perth

    Google Scholar 

  • Whiffin VS, van Paassen LA, Harkes MP (2007) Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol J 24(5):417–423. doi:10.1080/01490450701436505

    Article  CAS  Google Scholar 

  • Wiktor V, Jonkers HM (2011) Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem Concr Compos 33(7):763–770. doi:10.1016/j.cemconcomp.2011.03.012

    Article  CAS  Google Scholar 

  • Wiktor V, Jonkers HM (2012) Determination of the crack self-healing capacity of bacterial concrete, Concr Sol 331-334

  • Zamarreno DV, Inkpen R, May E (2009) Carbonate crystals precipitated by freshwater bacteria and their use as a limestone consolidant. Appl Environ Microbiol 75(18):5981–5990. doi:10.1128/aem.02079-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zammit G, Sanchez-Moral S, Albertano P (2011) Bacterially mediated mineralisation processes lead to biodeterioration of artworks in Maltese catacombs. Sci Total Environ 409(14):2773–2782. doi:10.1016/j.scitotenv.2011.03.008

    Article  CAS  PubMed  Google Scholar 

  • Zhu TT, Paulo C, Merroun ML, Dittrich M (2015) Potential application of biomineralization by Synechococcus PCC8806 for concrete restoration. Ecol Eng 82:459–468. doi:10.1016/j.ecoleng.2015.05.017

  • Zuo R (2007) Biofilms: strategies for metal corrosion inhibition employing microorganisms. Appl Microbiol Biotechnol 76(6):1245–1253. doi:10.1007/s00253-007-1130-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

As a postdoctoral fellow of the Research Foundation Flanders (FWO-Vlaanderen), Jianyun Wang gratefully acknowledges the financial support from the FWO. This work was also supported by the SHeMat project “Training Network for Self-Healing Materials: from Concepts to Market” within the scope of the Seventh Framework Programme [FP7/2007-2013] under grant agreement no 290308 by the European Commission’s Marie Curie programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nele De Belie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Ersan, Y.C., Boon, N. et al. Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability. Appl Microbiol Biotechnol 100, 2993–3007 (2016). https://doi.org/10.1007/s00253-016-7370-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7370-6

Keywords

Navigation