Skip to main content
Log in

Targeted production of secondary metabolites by coexpression of non-ribosomal peptide synthetase and prenyltransferase genes in Aspergillus

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Prenylated tryptophan-containing cyclic dipeptides are found in different fungi and serve as precursors for the biosynthesis of diverse biologically active secondary metabolites. They show distinct and usually higher biological and pharmacological activities than the respective non-prenylated dipeptides. Successful production of such compounds were achieved by a new approach based on the coexpression of ftmPS, a non-ribosomal peptide synthetase from Neosartorya fischeri, with three cyclic dipeptide prenyltransferase genes from different biosynthetic gene clusters in Aspergillus nidulans. The genes are expressed under the control of constitutive gpdA promoter and trpC terminator. Expression of ftmPS alone resulted in the formation of the expected cyclic dipeptide brevianamide F with a yield of up to 36.9 mg l−1. Introducing the reverse C2-prenyltransferase gene cdpC2PT as well as the reverse C3-prenyltransferase gene cdpNPT into a ftmPS mutant yielded reversely C2- and C3-prenylated derivatives, respectively. Coexpression of ftmPS with the reverse C3-prenyltransferase gene cdpC3PT resulted in the formation of N1-regularly, C2-, and C3-reversely prenylated derivatives. The prenyl transfer reactions catalyzed by CdpC2PT, CdpNPT, and CdpC3PT observed in this study correspond well to those detected with purified proteins. The yields of the detected prenylated products were found to be up to 12.2 mg l−1. The results presented in this study show the potential of synthetic biology for production of prenylated compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ali H, Ries MI, Nijland JG, Lankhorst PP, Hankemeier T, Bovenberg RA, Vreeken RJ, Driessen AJ (2013) A branched biosynthetic pathway is involved in production of roquefortine and related compounds in Penicillium chrysogenum. PLoS One 8:e65328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ames BD, Walsh CT (2010) Anthranilate-activating modules from fungal nonribosomal peptide assembly lines. Biochemistry 49:3351–3365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ballance DJ, Buxton FP, Turner G (1983) Transformation of Aspergillus nidulans by the orotidine-5'-phosphate decarboxylase gene of Neurospora crassa. Biochem Biophys Res Commun 112:284–289

    Article  CAS  PubMed  Google Scholar 

  • Borthwick AD (2012) 2,5-diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem Rev 112:3641–3716

    Article  CAS  PubMed  Google Scholar 

  • Bouhired S, Weber M, Kempf-Sontag A, Keller NP, Hoffmeister D (2007) Accurate prediction of the Aspergillus nidulans terrequinone gene cluster boundaries using the transcriptional regulator LaeA. Fungal Genet Biol 44:1134–1145

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw RE (2006) From protoplast to gene clusters. Mycologist 20:133–139

    Article  Google Scholar 

  • Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11:21–32

    Article  CAS  PubMed  Google Scholar 

  • Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22

    Article  CAS  PubMed  Google Scholar 

  • Caballero E, Avendañno C, Menéndez JC (2003) Brief total synthesis of the cell cycle inhibitor tryprostatin B and related preparation of its alanine analogue. J Org Chem 68:6944–6951

    Article  CAS  PubMed  Google Scholar 

  • Calvo AM, Bok J, Brooks W, Keller NP (2004) veA is required for toxin and sclerotial production in Aspergillus parasiticus. Appl Environ Microbiol 70:4733–4739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cramer RA Jr, Stajich JE, Yamanaka Y, Dietrich FS, Steinbach WJ, Perfect JR (2006) Phylogenomic analysis of non-ribosomal peptide synthetases in the genus Aspergillus. Gene 383:24–32

    Article  CAS  PubMed  Google Scholar 

  • Cui CB, Kakeya H, Okada G, Onose R, Osada H (1996) Novel mammalian cell cycle inhibitors, tryprostatins A, B and other diketopiperazines produced by Aspergillus fumigatus. I. taxonomy, fermentation, isolation and biological properties. J Antibiot 49:527–533

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Wet JR, Cavalcoli J, Li S, Greshock TJ, Miller KA, Finefield JM, Sunderhaus JD, McAfoos TJ, Tsukamoto S, Williams RM, Sherman DH (2010) Genome-based characterization of two prenylation steps in the assembly of the stephacidin and notoamide anticancer agents in a marine-derived Aspergillus sp. J Am Chem Soc 132:12733–12740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frisvad JC, Rank C, Nielsen KF, Larsen TO (2009) Metabolomics of Aspergillus fumigatus. Med Mycol 47:S53–S71

    Article  CAS  PubMed  Google Scholar 

  • García-Estrada C, Ullán RV, Álbillos SM, Fernández-Bodega MA, Durek P, von DH, Martín JF (2011) A single cluster of coregulated genes encodes the biosynthesis of the mycotoxins roquefortine C and meleagrin in Penicillium chrysogenum. Chem Biol 18:1499–1512

    Article  PubMed  Google Scholar 

  • Grundmann A, Li S-M (2005) Overproduction, purification and characterization of FtmPT1, a brevianamide F prenyltransferase from Aspergillus fumigatus. Microbiology 151:2199–2207

    Article  CAS  PubMed  Google Scholar 

  • Gu B, He S, Yan X, Zhang L (2013) Tentative biosynthetic pathways of some microbial diketopiperazines. Appl Microbiol Biotechnol 97:8439–8453

    Article  CAS  PubMed  Google Scholar 

  • Li S-M (2010) Prenylated indole derivatives from fungi: structure diversity, biological activities, biosynthesis and chemoenzymatic synthesis. Nat Prod Rep 27:57–78

    Article  PubMed  Google Scholar 

  • Li S-M (2011) Genome mining and biosynthesis of fumitremorgin-type alkaloids in ascomycetes. J Antibiot 64:45–49

    Article  CAS  PubMed  Google Scholar 

  • Maiya S, Grundmann A, Li S-M, Turner G (2006) The fumitremorgin gene cluster of Aspergillus fumigatus: identification of a gene encoding brevianamide F synthetase. Chembiochem 7:1062–1069

    Article  CAS  PubMed  Google Scholar 

  • Maiya S, Grundmann A, Li S-M, Turner G (2009) Improved tryprostatin B production by heterologous gene expression in Aspergillus nidulans. Fungal Genet Biol 46:436–440

    Article  CAS  PubMed  Google Scholar 

  • Marahiel MA (1992) Multidomain enzymes involved in peptide synthesis. FEBS Lett 307:40–43

    Article  CAS  PubMed  Google Scholar 

  • Minto RE, Townsend CA (1997) Enzymology and molecular biology of aflatoxin biosynthesis. Chem Rev 97:2537–2556

    Article  CAS  PubMed  Google Scholar 

  • Mundt K, Li S-M (2013) CdpC2PT, a reverse prenyltransferase from Neosartorya fischeri with distinct substrate preference from known C2-prenyltransferases. Microbiology 159:2169–2179

    Article  CAS  PubMed  Google Scholar 

  • Mundt K, Wollinsky B, Ruan HL, Zhu T, Li S-M (2012) Identification of the verruculogen prenyltransferase FtmPT3 by a combination of chemical, bioinformatic and biochemical approaches. Chembiochem 13:2583–2592

    Article  CAS  PubMed  Google Scholar 

  • Nayak T, Szewczyk E, Oakley CE, Osmani A, Ukil L, Murray SL, Hynes MJ, Osmani SA, Oakley BR (2006) A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172:1557–1566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Punt PJ, Zegers ND, Busscher M, Pouwels PH, van den Hondel CA (1991) Intracellular and extracellular production of proteins in Aspergillus under the control of expression signals of the highly expressed Aspergillus nidulans gpdA gene. J Biotechnol 17:19–33

    Article  CAS  PubMed  Google Scholar 

  • Röttig M, Medema MH, Blin K, Weber T, Rausch C, Kohlbacher O (2011) NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res 39:W362–W367

    Article  PubMed Central  PubMed  Google Scholar 

  • Sakai K, Kinoshita H, Nihira T (2012) Heterologous expression system in Aspergillus oryzae for fungal biosynthetic gene clusters of secondary metabolites. Appl Microbiol Biotechnol 93:2011–2022

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schuller JM, Zocher G, Liebhold M, Xie X, Stahl M, Li S-M, Stehle T (2012) Structure and catalytic mechanism of a cyclic dipeptide prenyltransferase with broad substrate promiscuity. J Mol Biol 422:87–99

    Article  CAS  PubMed  Google Scholar 

  • Shimizu K, Keller NP (2001) Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics 157:600

    Google Scholar 

  • Tilburn J, Scazzocchio C, Taylor GG, Zabicky-Zissman JH, Lockington RA, Davies RW (1983) Transformation by integration in Aspergillus nidulans. Gene 26:205–221

    Article  CAS  PubMed  Google Scholar 

  • Usui T, Kondoh M, Cui CB, Mayumi T, Osada H (1998) Tryprostatin A, a specific and novel inhibitor of microtubule assembly. Biochem J 333:543–548

    PubMed Central  CAS  PubMed  Google Scholar 

  • van Loevezijn A, Allen JD, Schinkel AH, Koomen GJ (2001) Inhibition of BCRP-mediated drug efflux by fumitremorgin-type indolyl diketopiperazines. Bioorg Med Chem Lett 11:29–32

    Article  PubMed  Google Scholar 

  • Weber T, Marahiel MA (2001) Exploring the domain structure of modular nonribosomal peptide synthetases. Structure 9:R3–R9

    Article  CAS  PubMed  Google Scholar 

  • Williams RM, Stocking EM, Sanz-Cervera JF (2000) Biosynthesis of prenylated alkaloids derived from tryptophan. Top Curr Chem 209:97–173

    Article  CAS  Google Scholar 

  • Wollinsky B, Ludwig L, Hamacher A, Yu X, Kassack MU, Li S-M (2012) Prenylation at the indole ring leads to a significant increase of cytotoxicity of tryptophan-containing cyclic dipeptides. Bioorg Med Chem Lett 22:3866–3869

    Article  CAS  PubMed  Google Scholar 

  • Yelton MM, Hamer JE, Timberlake WE (1984) Transformation of Aspergillus nidulans by using a trpC plasmid. Proc Natl Acad Sci U S A 81:1470–1474

  • Yin W-B, Ruan H-L, Westrich L, Grundmann A, Li S-M (2007) CdpNPT, an N-prenyltransferase from Aspergillus fumigatus: overproduction, purification and biochemical characterisation. Chembiochem 8:1154–1161

    Article  CAS  PubMed  Google Scholar 

  • Yin W-B, Xie X-L, Matuschek M, Li S-M (2010a) Reconstruction of pyrrolo[2,3-b]indoles carrying an a-configured reverse C3-dimethylallyl moiety by using recombinant enzymes. Org Biomol Chem 8:1133–1141

    Article  CAS  PubMed  Google Scholar 

  • Yin W-B, Yu X, Xie X-L, Li S-M (2010b) Preparation of pyrrolo[2,3-b]indoles carrying a ß-configured reverse C3-dimethylallyl moiety by using a recombinant prenyltransferase CdpC3PT. Org Biomol Chem 8:2430–2438

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Li S-M (2012) Prenyltransferases of the dimethylallyltryptophan synthase superfamily. Methods Enzymol 516:259–278

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Zocher G, Xie X, Liebhold M, Schütz S, Stehle T, Li S-M (2013) Catalytic mechanism of stereospecific formation of cis-configured prenylated pyrroloindoline diketopiperazines by indole prenyltransferases. Chem Biol 20:1492–1501

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Baumann U, Reymond JL (2004) An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res 32:e115

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This project and Dr. K. Mundt are financially supported by the LOEWE program of the State of Hessen (SynMikro to S.-M. Li). We thank Dr. G. Laufenberg and Dr. R. Ortmann for taking mass and NMR spectra, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Ming Li.

Additional information

Carsten Wunsch and Kathrin Mundt contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1084 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wunsch, C., Mundt, K. & Li, SM. Targeted production of secondary metabolites by coexpression of non-ribosomal peptide synthetase and prenyltransferase genes in Aspergillus . Appl Microbiol Biotechnol 99, 4213–4223 (2015). https://doi.org/10.1007/s00253-015-6490-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6490-8

Keywords

Navigation