Skip to main content

Advertisement

Log in

Selection of a novel FGF23-binding peptide antagonizing the inhibitory effect of FGF23 on phosphate uptake

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Fibroblast growth factor 23 (FGF23) is a bone-derived endocrine regulator of phosphate homeostasis and has been considered as a potential therapeutic target for hypophosphatemic disorders. Herein, we isolated a novel FGF23-binding peptide by screening a phage display library with FGF23180–205, the minimal epitope of FGF23 binding to the binary fibroblast growth factor receptor (FGFR)-Klotho complex. The corresponding peptide (referred to as 23-b6) showed high homology to the immunoglobulin-like (Ig-like) domain III (D3) of FGFR1c, the predominant receptor mediating the phosphaturic activity of FGF23. The 23-b6 peptide and panning target FGF23180–205 carried opposite charges and shared similar hydrophilic profiles. Functional analysis indicated that synthetic 23-b6 peptide exhibited antagonistic effect on the inhibition of phosphate uptake by FGF23 in opossum kidney cells (OK cells). The mechanisms of 23-b6 peptide impairing the bioactivity of FGF23 involved blockade of the activation of Erk cascade and up-regulation of NaPi-2a and NaPi-2c expression in OK cells. Our results demonstrate that the 23-b6 peptide is a potent FGF23 antagonist with increased effect on phosphate uptake in kidney cells and might have therapeutic potentials in hypophosphatemic disorders characterized by an abnormally high level of FGF23.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrukhova O, Zeitz U, Goetz R, Mohammadi M, Lanske B, Erben RG (2012) FGF23 acts directly on renal proximal tubules to induce phosphaturia through activation of the ERK1/2-SGK1 signaling pathway. Bone 51(3):621–628. doi:10.1016/j.bone.2012.05.015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Benet-Pages A, Orlik P, Strom TM, Lorenz-Depiereux B (2005) An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet 14(3):385–390. doi:10.1093/hmg/ddi034

    Article  CAS  PubMed  Google Scholar 

  • Biber J, Hernando N, Forster I, Murer H (2009) Regulation of phosphate transport in proximal tubules. Pflugers Arch 458(1):39–52. doi:10.1007/s00424-008-0580-8

    Article  CAS  PubMed  Google Scholar 

  • Gaasbeek A, Meinders AE (2005) Hypophosphatemia: an update on its etiology and treatment. Am J Med 118(10):1094–1101. doi:10.1016/j.amjmed.2005.02.014

    Article  CAS  PubMed  Google Scholar 

  • Garringer HJ, Malekpour M, Esteghamat F, Mortazavi SM, Davis SI, Farrow EG, Yu X, Arking DE, Dietz HC, White KE (2008) Molecular genetic and biochemical analyses of FGF23 mutations in familial tumoral calcinosis. Am J Physiol Endocrinol Metab 295(4):E929–E937. doi:10.1152/ajpendo.90456.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gattineni J, Bates C, Twombley K, Dwarakanath V, Robinson ML, Goetz R, Mohammadi M, Baum M (2009) FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol 297(2):F282–F291. doi:10.1152/ajprenal.90742.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goetz R, Nakada Y, Hu MC, Kurosu H, Wang L, Nakatani T, Shi M, Eliseenkova AV, Razzaque MS, Moe OW, Kuro-o M, Mohammadi M (2010) Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation. Proc Natl Acad Sci U S A 107(1):407–412. doi:10.1073/pnas.0902006107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goetz R, Ohnishi M, Ding X, Kurosu H, Wang L, Akiyoshi J, Ma J, Gai W, Sidis Y, Pitteloud N, Kuro OM, Razzaque MS, Mohammadi M (2012) Klotho coreceptors inhibit signaling by paracrine fibroblast growth factor 8 subfamily ligands. Mol Cell Biol 32(10):1944–1954. doi:10.1128/MCB. 06603-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Imel EA, Econs MJ (2005) Fibroblast growth factor 23: roles in health and disease. J Am Soc Nephrol 16(9):2565–2575. doi:10.1681/ASN.2005050573

    Article  CAS  PubMed  Google Scholar 

  • Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, Luo G, Jones SA, Goodwin B, Richardson JA, Gerard RD, Repa JJ, Mangelsdorf DJ, Kliewer SA (2005) Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2(4):217–225. doi:10.1016/j.cmet.2005.09.001

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Sakurai A, Hayashi K, Ohi A, Kangawa N, Nishiyama T, Sugino S, Uehata Y, Kamahara A, Sakata M, Tatsumi S, Kuwahata M, Taketani Y, Segawa H, Miyamoto K (2010) An apical expression signal of the renal type IIc Na+-dependent phosphate cotransporter in renal epithelial cells. Am J Physiol Renal Physiol 299(1):F243–F254. doi:10.1152/ajprenal.00189.2009

    Article  CAS  PubMed  Google Scholar 

  • Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, Gromada J, Brozinick JT, Hawkins ED, Wroblewski VJ, Li DS, Mehrbod F, Jaskunas SR, Shanafelt AB (2005) FGF-21 as a novel metabolic regulator. J Clin Invest 115(6):1627–1635. doi:10.1172/JCI23606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kobayashi K, Imanishi Y, Koshiyama H, Miyauchi A, Wakasa K, Kawata T, Goto H, Ohashi H, Koyano HM, Mochizuki R, Miki T, Inaba M, Nishizawa Y (2006a) Expression of FGF23 is correlated with serum phosphate level in isolated fibrous dysplasia. Life Sci 78(20):2295–2301. doi:10.1016/j.lfs.2005.09.052

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Imanishi Y, Miyauchi A, Onoda N, Kawata T, Tahara H, Goto H, Miki T, Ishimura E, Sugimoto T, Ishikawa T, Inaba M, Nishizawa Y (2006b) Regulation of plasma fibroblast growth factor 23 by calcium in primary hyperparathyroidism. Eur J Endocrinol 154(1):93–99. doi:10.1530/eje.1.02053

    Article  CAS  PubMed  Google Scholar 

  • Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281(10):6120–6123. doi:10.1074/jbc.C500457200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larsson T, Marsell R, Schipani E, Ohlsson C, Ljunggren O, Tenenhouse HS, Juppner H, Jonsson KB (2004) Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology 145(7):3087–3094. doi:10.1210/en.2003-1768

    Article  CAS  PubMed  Google Scholar 

  • Negri AL (2007) Hereditary hypophosphatemias: new genes in the bone-kidney axis. Nephrology (Carlton) 12(4):317–320. doi:10.1111/j.1440-1797.2007.00824.x

    Article  CAS  Google Scholar 

  • Shiber JR, Mattu A (2002) Serum phosphate abnormalities in the emergency department. J Emerg Med 23(4):395–400

    Article  PubMed  Google Scholar 

  • Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19(3):429–435. doi:10.1359/JBMR.0301264

    Article  CAS  PubMed  Google Scholar 

  • Sorribas V, Markovich D, Hayes G, Stange G, Forgo J, Biber J, Murer H (1994) Cloning of a Na/Pi cotransporter from opossum kidney cells. J Biol Chem 269(9):6615–6621

    CAS  PubMed  Google Scholar 

  • Strewler GJ (2001) FGF23, hypophosphatemia, and rickets: has phosphatonin been found? Proc Natl Acad Sci U S A 98(11):5945–5946. doi:10.1073/pnas.11154898

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444(7120):770–774. doi:10.1038/nature05315

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Lin S, Nie Y, Jia X, Wang J, Xiao J, Wu J, Li X, Wu X (2010) Mechanism of antitumor effect of a novel bFGF binding peptide on human colon cancer cells. Cancer Sci 101(5):1212–1218. doi:10.1111/j.1349-7006.2010.01501.x

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Jia X, Ji Y, Wang C, Yu Y, Gao S, Li Q, Li X (2011) Effects of a synthetic bFGF antagonist peptide on the proteome of 3T3 cells stimulated with bFGF. Int J Pept Res Ther 17(1):53–59. doi:10.1007/s10989-011-9240-5

  • Wu X, Yan Q, Huang Y, Huang H, Su Z, Xiao J, Zeng Y, Wang Y, Nie C, Yang Y, Li X (2010) Isolation of a novel basic FGF-binding peptide with potent antiangiogenetic activity. J Cell Mol Med 14(1–2):351–356. doi:10.1111/j.1582-4934.2008.00506.x

    Article  CAS  PubMed  Google Scholar 

  • Yamashita T, Konishi M, Miyake A, Inui K, Itoh N (2002) Fibroblast growth factor (FGF)-23 inhibits renal phosphate reabsorption by activation of the mitogen-activated protein kinase pathway. J Biol Chem 277(31):28265–28270. doi:10.1074/jbc.M202527200

    Article  CAS  PubMed  Google Scholar 

  • Yamashita T, Yoshioka M, Itoh N (2000) Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun 277(2):494–498. doi:10.1006/bbrc.2000.3696

    Article  CAS  PubMed  Google Scholar 

  • Yu X, White KE (2005) FGF23 and disorders of phosphate homeostasis. Cytokine Growth Factor Rev 16(2):221–232. doi:10.1016/j.cytogfr.2005.01.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81071800), the Natural Science Foundation of Zhejiang Province of China (LY14H310013), the Team Project of Natural Science Foundation of Guangdong Province of China (S2013030013315), Guangdong Provincial “Thousand-Hundred-Ten Talent Project” (X. Wu), Key Laboratory of Molecule Immunology and Antibody Engineering of Guangdong Province, and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Wu.

Additional information

Tao Huang, Xiaomian Lin, and Quchou Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Lin, X., Li, Q. et al. Selection of a novel FGF23-binding peptide antagonizing the inhibitory effect of FGF23 on phosphate uptake. Appl Microbiol Biotechnol 99, 3169–3177 (2015). https://doi.org/10.1007/s00253-014-6283-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6283-5

Keywords

Navigation