Skip to main content
Log in

The influence of oxygen limitation for the production of succinic acid with recombinant strains of Yarrowia lipolytica

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The yeast Yarrowia lipolytica is able to produce high amounts of several organic acids such as pyruvic, citric, isocitric, alpha-ketoglutaric, and succinic acid. Here we report on the influence of the reduced activity of succinate dehydrogenase in Y. lipolytica on its ability to produce succinate. The recombinant strains Y. lipolytica H222-AZ1 and H222-AZ2 were created by exchange of the native promoter of the succinate dehydrogenase subunit 2 encoding gene by inducible promoters. During the cultivation of the strain Y. lipolytica H222-AZ1 in shaking flask experiments, it was found that the promoter exchange resulted in an increase in succinic acid (SA) production. Moreover, it was found that the production of SA depends on an additional limitation of oxygen. Fed-batch cultivations in 1-l bioreactors confirmed this fundamental finding. Y. lipolytica H222-AZ1 produced 2 g l−1 of SA with oxygen supply and 9.2 g l−1 under the limitation of oxygen after 165 h. By using a less active promoter in Y. lipolytica H222-AZ2, the production of SA was increased to 25 g l−1 with a productivity of 0.152 g (l*h)−1 and a selectivity of 67 % after 165 h. Yields of 2.39 g SA per gram biomass and 0.26 g SA per gram glycerol were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ackrell BA, Kearney EB, Singer TP (1978) Mammalian succinate dehydrogenase. Methods Enzymol 53:466–483

    Article  CAS  PubMed  Google Scholar 

  • Arikawa Y, Kobayashi M, Kodaira R, Shimosaka M, Muratsubaki H, Enomoto K, Okazaki M (1999) Isolation of sake yeast strains possessing various levels of succinate- and/or malate-producing abilities by gene disruption or mutation. J Biosci Bioeng 87(3):333–339. doi:10.1016/S1389-1723(99)80041-3

    Article  CAS  PubMed  Google Scholar 

  • Barnett JA, Payne RW, Yarrow D (1990) Yarrowia lipolytica Yeasts: Characteristics and identification. Cambridge University Press, Cambridge 683–684

  • Barth G, Gaillardin C (1996) Yarrowia lipolytica. In: Wolf K (ed) Nonconventional yeasts in biotechnology. Springer, Berlin, pp 313–388

    Chapter  Google Scholar 

  • Barth G, Gaillardin C (1997) Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev 19(4):219–237. doi:10.1111/j.1574-6976.1997.tb00299.x

    Article  CAS  PubMed  Google Scholar 

  • Bechthold I, Bretz K, Kabasci S, Kopitzky R, Springer A (2008) Succinic acid: a new platform chemical for biobased polymers from renewable resources. Chem Eng Technol 31:647–654. doi:10.1002/ceat.200800063

    Article  CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72(1–2):248–254. doi:10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  • Broomfield PLE, Hargreaves JA (1992) A single amino-acid change in the iron-sulfur protein subunit of succinate-dehydrogenase confers resistance to carboxin in ustilago-maydis. Curr Genet 22(2):117–121. doi:10.1007/Bf00351470

    Article  CAS  PubMed  Google Scholar 

  • Campbell I (1975) Numerical analysis and computerized identification of the yeast genera Candida and Torulopsis. J Gen Microbiol 90:125–132

  • Carole TM, Pellegrino J, Paster MD (2004) Opportunities in the industrial biobased products industry. Appl Biochem Biotechnol 113:871–885

    Article  PubMed  Google Scholar 

  • Casaregola S, Neuveglise C, Lepingle A, Bon E, Feynerol C, Artiguenave F, Wincker P, Gaillardin C (2000) Genomic exploration of the hemiascomycetous yeasts: 17. Yarrowia lipolytica. FEBS Lett 487(1):95–100. doi:10.1016/S0014-5793(00)02288-2

    Article  CAS  PubMed  Google Scholar 

  • Chapman KB, Solomon SD, Boeke JD (1992) Sdh1, the gene encoding the succinate-dehydrogenase flavoprotein subunit from Saccharomyces-Cerevisiae. Gene 118(1):131–136. doi:10.1016/0378-1119(92)90260-V

    Article  CAS  PubMed  Google Scholar 

  • Chernyavskaya OG, Shishkanova NV, Il’chenko AP, Finogenova TV (2000) Synthesis of alpha-ketoglutaric acid by Yarrowia lipolytica yeast grown on ethanol. Appl Microbiol Biotechnol 53(2):152–158

    Article  CAS  PubMed  Google Scholar 

  • De Jong E, Higson A, Walsh P, Wellisch M (2012) Product developments in the biobased chemicals arena. Biofuels Bioprod Biorefin 6:606–624

    Google Scholar 

  • Dennis RA, Rhodey M, McCammon MT (1999) Yeast mutants of glucose metabolism with defects in the coordinate regulation of carbon assimilation. Arch Biochem Biophys 365(2):279–288. doi:10.1006/abbi.1999.1163

    Article  CAS  PubMed  Google Scholar 

  • Fickers P, Le Dall MT, Gaillardin C, Thonart P, Nicaud JM (2003) New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica. J Microbiol Meth 55(3):727–737. doi:10.1016/j.mimet.2003.07.003

    Article  CAS  Google Scholar 

  • Fickers P, Benetti PH, Wache Y, Marty A, Mauersberger S, Smit MS, Nicaud JM (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5(6–7):527–543. doi:10.1016/j.femsyr.2004.09.004

    Article  CAS  PubMed  Google Scholar 

  • Furukawa T, Ogino T, Matsuyoshi T (1982) Fermentative production of citric acid from n-paraffins by Saccharomycopsis lipolytica. J Ferment Technol 60(4):281–286

    CAS  Google Scholar 

  • Gerber J (1999) Untersuchungen zur Optimierung des Elektronentransportsystems für die Cytochrom P450 katalysierte Biotransformation von Steroiden in Yarrowia lipolytica. Diplomarbeit, Technische Universität Dresden

  • Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A, El Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kotter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo CY, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang YH, Yen G, Youngman E, Yu KX, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387–391. doi:10.1038/Nature00935

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Cabo P, Vazquez-Manrique RP, Garcia-Gimeno MA, Sanz P, Palau F (2005) Frataxin interacts functionally with mitochondrial electron transport chain proteins. Hum Mol Genet 14(15):2091–2098. doi:10.1093/Hmg/Ddi214

    Article  CAS  PubMed  Google Scholar 

  • Hao HX, Khalimonchuk O, Schraders M, Dephoure N, Bayley JP, Kunst H, Devilee P, Cremers CWRJ, Schiffman JD, Bentz BG, Gygi SP, Winge DR, Kremer H, Rutter J (2009) SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 325(5944):1139–1142. doi:10.1126/science.1175689

    Article  CAS  PubMed  Google Scholar 

  • Heretsch P, Thomas F, Aurich A, Krautscheid H, Sicker D, Giannis A (2008) Syntheses with a chiral building block from the citric acid cycle: (2R,3S)-isocitric acid by fermentation of sunflower oil. Angew Chem Int Ed 47(10):1958–1960. doi:10.1002/anie.200705000

    Article  CAS  Google Scholar 

  • Hoffmann CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272

    Article  Google Scholar 

  • Holz M, Forster A, Mauersberger S, Barth G (2009) Aconitase overexpression changes the product ratio of citric acid production by Yarrowia lipolytica. Appl Microbiol Biotechnol 81(6):1087–1096. doi:10.1007/s00253-008-1725-6

    Article  CAS  PubMed  Google Scholar 

  • Holz M, Otto C, Kretzschmar A, Yovkova V, Aurich A, Potter M, Marx A, Barth G (2011) Overexpression of alpha-ketoglutarate dehydrogenase in Yarrowia lipolytica and its effect on production of organic acids. Appl Microbiol Biotechnol 89(5):1519–1526. doi:10.1007/s00253-010-2957-9

    Article  CAS  PubMed  Google Scholar 

  • Horsefield R, Yankovskaya V, Sexton G, Whittingham W, Shiomi K, Omura S, Byrne B, Cecchini G, Iwata S (2006) Structural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase)—a mechanism of electron transfer and proton conduction during ubiquinone reduction. J Biol Chem 281(11):7309–7316. doi:10.1074/jbc.M508173200

    Article  CAS  PubMed  Google Scholar 

  • Il’chenko AP, Chernyavskaya OG, Shishkanova NV, Finogenova TV (2001) Metabolic characteristics of the mutant Yarrowia lipolytica strain 1 producing alpha-ketoglutaric and citric acids from ethanol and the effect of [NH4+] and [O-2] on yeast respiration and acidogenesis. Microbiology 70(2):151–157. doi:10.1023/A:1010421328285

    Article  Google Scholar 

  • Juretzek T, Wang H, Nicaud J, Mauersberger S, Barth G (2000) Comparison of promoters suitable for regulated overexpression of β-galactosidase in the alkane-utilizing yeast Yarrowia lipolytica. Biotechnol Bioprocess Eng 5:320–326

    Article  CAS  Google Scholar 

  • Juretzek T, Le Dall M, Mauersberger S, Gaillardin C, Barth G, Nicaud J (2001) Vectors for gene expression and amplification in the yeast Yarrowia lipolytica. Yeast 18(2):97–113. doi:10.1002/1097-0061(20010130)18:2<97::AID-YEA652>3.0.CO;2-U

    Article  CAS  PubMed  Google Scholar 

  • Kamzolova SV, Morgunov IG (2013) alpha-Ketoglutaric acid production from rapeseed oil by Yarrowia lipolytica yeast. Appl Microbiol Biotechnol 97(12):5517–5525. doi:10.1007/s00253-013-4772-6

    Article  CAS  PubMed  Google Scholar 

  • Kamzolova SV, Yusupova AI, Dedyukhina EG, Chistyakova TI, Kozyreva TM, Morgunov IG (2009a) Succinic acid synthesis by ethanol-grown yeasts. Food Technol Biotechnol 47(2):144–152

    CAS  Google Scholar 

  • Kamzolova SV, Yusupova AI, Vinokurova NG, Fedotcheva NI, Kondrashova MN, Finogenova TV, Morgunov IG (2009b) Chemically assisted microbial production of succinic acid by the yeast Yarrowia lipolytica grown on ethanol. Appl Microbiol Biotechnol 83(6):1027–1034. doi:10.1007/s00253-009-1948-1

    Article  CAS  PubMed  Google Scholar 

  • Kamzolova SV, Chiglintseva MN, Yusupova AI, Vinokurova NG, Lysanskaya VY, Morgunov IG (2012a) Biotechnological potential of Yarrowia lipolytica grown under thiamine limitation. Food Technol Biotechnol 50(4):412–419

    CAS  Google Scholar 

  • Kamzolova SV, Vinokurova NG, Yusupova AI, Morgunov IG (2012b) Succinic acid production from n-alkanes. Eng Life Sci 12(5):560–566. doi:10.1002/elsc.201100241

    Article  CAS  Google Scholar 

  • Kamzolova SV, Dedyukhina EG, Samoilenko VA, Lunina JN, Puntus IF, Allayarov RL, Chiglintseva MN, Mironov AA, Morgunov IG (2013) Isocitric acid production from rapeseed oil by Yarrowia lipolytica yeast. Appl Microbiol Biotechnol 97(20):9133–9144. doi:10.1007/s00253-013-5182-5

    Article  CAS  PubMed  Google Scholar 

  • Kamzolova SV, Vinokurova NG, Dedyukhina EG, Samoilenko VA, Lunina JN, Mironov AA, Allayarov RK, Morgunov IG (2014a) The peculiarities of succinic acid production from rapeseed oil by Yarrowia lipolytica yeast. Appl Microbiol Biotechnol 98(9):4149–4157

    Article  CAS  PubMed  Google Scholar 

  • Kamzolova SV, Vinokurova NG, Shemshura ON, Bekmakhanova NE, Lunina JN, Samoilenko VA, Morgunov IG (2014b) The production of succinic acid by yeast Yarrowia lipolytica through a two-step process. Appl Microbiol Biotechnol 98(18):7959–7969

    Article  CAS  PubMed  Google Scholar 

  • Kretschmar A (2010) Die Beeinflussung der Succinatproduktion durch die veränderte Aktivität der Succinyl-CoA Synthetase und der Pyruvat-Carboxylase in Yarrowia lipolytica. Doktorarbeit, Technische Universität Dresden

  • Kretzschmar A, Otto C, Holz M, Werner S, Hubner L, Barth G (2013) Increased homologous integration frequency in Yarrowia lipolytica strains defective in non-homologous end-joining. Curr Genet 59(1–2):63–72. doi:10.1007/s00294-013-0389-7

    Article  CAS  PubMed  Google Scholar 

  • Kubo Y, Takagi H, Nakamori S (2000) Effect of gene disruption of succinate dehydrogenase on succinate production in a sake yeast strain. J Biosci Bioeng 90(6):619–624. doi:10.1263/Jbb.90.619

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman CP (1998) Yarrowia van der Walt & von Arx. In: Kurtzman CP, Fell JW (eds) The Yeasts, a taxonomic study. vol 1. Elsevier, Amsterdam 420–421

  • Lee SY, Kim JM, Song H, Lee JW, Kim TY, Jang YS (2008) From genome sequence to integrated bioprocess for succinic acid production by Mannheimia succiniciproducens. Appl Microbiol Biotechnol 79(1):11–22. doi:10.1007/s00253-008-1424-3

    Article  CAS  PubMed  Google Scholar 

  • Lemire BD, Oyedotun KS (2002) The Saccharomyces cerevisiae mitochondrial succinate:ubiquinone oxidoreductase. BBA Bioenerg 1553(1–2):102–116. doi:10.1016/S0005-2728(01)00229-8

    Article  CAS  Google Scholar 

  • Li J, Jiang M, Chen KQ, Shang LG, Wei P, Ying HJ, Ye Q, Ouyang PK, Chang HN (2010) Enhanced production of succinic acid by Actinobacillus succinogenes with reductive carbon source. Process Biochem 45(6):980–985. doi:10.1016/j.procbio.2010.03.001

    Article  CAS  Google Scholar 

  • Lin SKC, Du CY, Koutinas A, Wang RH, Webb C (2008) Substrate and product inhibition kinetics in succinic acid production by Actinobacillus succinogenes. Biochem Eng J 41(2):128–135. doi:10.1016/j.bej.2008.03.013

    Article  CAS  Google Scholar 

  • Marchal R, Chaude O, Metche M (1977) Production of citric-acid from n-paraffins by Saccharomycopsis lipolytica—kinetics and balance of fermentation. Eur J Appl Microbiol 4(2):111–123. doi:10.1007/Bf00929162

    Article  CAS  Google Scholar 

  • Matsson M, Hederstedt L (2001) The carboxin-binding site on Paracoccus denitrificans succinate:quinone reductase identified by mutations. J Bioenerg Biomembr 33(2):99–105. doi:10.1023/A:1010744330092

    Article  CAS  PubMed  Google Scholar 

  • Mattey M (1992) The production of organic acids. Crit Rev Biotechnol 12(1–2):87–132. doi:10.3109/07388559209069189

    Article  CAS  PubMed  Google Scholar 

  • Mauersberger S, Kruse K, Barth G (2003) Induction of citric acid/isocitric acid and a-ketoglutaric acid production in the yeast Yarrowia lipolytica. In: Wolf KH, Breunig K, Barth G (eds) Non-conventional yeasts in genetics, biochemistry and biotechnology. Practical protocols. Springer, Berlin, pp 393–400

    Chapter  Google Scholar 

  • McKinley JB, Vielle C, Zeikus JG (2007) Prospects for biobased succinate industry. Appl Microbiol Biotechnol 76:727–740

    Article  Google Scholar 

  • Okoshi H, Sato S, Mukataka S, Takahashi J (1987) Citric acid production by Candida tropicalis under high dissolved oxygen concentrations. Agric Biol Chem Tokyo 51(1):257–258

    Article  CAS  Google Scholar 

  • Orjuela A, Orjuela A, Lira CT, Miller DJ (2013) A novel process for recovery of fermentation-derived succinic acid: process design and economic analysis. Bioresour Technol 139:235–241. doi:10.1016/j.biortech.2013.03.174

    Article  CAS  PubMed  Google Scholar 

  • Oyedotun KS, Lemire BD (2004) The quaternary structure of the Saccharomyces cerevisiae succinate dehydrogenase—homology modeling, cofactor docking, and molecular dynamics simulation studies. J Biol Chem 279(10):9424–9431. doi:10.1074/jbc.M311876200

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G (2002) Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl Microbiol Biotechnol 58(3):308–312. doi:10.1007/s00253-001-0897-0

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou S, Chatzifragkou A, Fakas S, Galiotou-Panayotou M, Komaitis M, Nicaud JM, Aggelis G (2009) Biosynthesis of lipids and organic acids by Yarrowia lipolytica strains cultivated on glucose. Eur J Lipid Sci Technol 111(12):1221–1232. doi:10.1002/ejlt.200900055

    Article  CAS  Google Scholar 

  • Raab AM, Gebhardt G, Bolotina N, Weuster-Botz D, Lang C (2010) Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Metab Eng 12(6):518–525. doi:10.1016/j.ymben.2010.08.005

    Article  CAS  PubMed  Google Scholar 

  • Rane KD, Sims KA (1993) Production of citric acid by Candida lipolytica Y1095—effect of glucose-concentration on yield and productivity. Enzym Microb Technol 15(8):646–651. doi:10.1016/0141-0229(93)90063-8

    Article  CAS  Google Scholar 

  • Saliola M, Bartoccioni PC, De Maria I, Lodi T, Falcone C (2004) The deletion of the succinate dehydrogenase gene KlSDH1 in Kluyveromyces lactis does not lead to respiratory deficiency. Eukaryot Cell 3(3):589–597. doi:10.1128/EC.3.3.589-597.2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26(2):100–108. doi:10.1016/j.tibtech.2007.11.006

    Article  CAS  PubMed  Google Scholar 

  • Sherman D, Durrens P, Beyne E, Nikolski M, Souciet JL, Genolevures Consortium (2004) Genolevures: comparative genomics and molecular evolution of hemiascomycetous yeasts. Nucleic Acids Res 32:D315–D318. doi:10.1093/Nar/Gkh091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shima Y, Ito Y, Kaneko S, Hatabayashi H, Watanabe Y, Adachi Y, Yabe K (2009) Identification of three mutant loci conferring carboxin-resistance and development of a novel transformation system in Aspergillus oryzae. Fungal Genet Biol 46(1):67–76. doi:10.1016/j.fgb.2008.10.005

    Article  CAS  PubMed  Google Scholar 

  • Shima Y, Ito Y, Hatabayashi H, Koma A, Yabe K (2011) Five carboxin-resistant mutants exhibited various responses to carboxin and related fungicides. Biosci Biotechnol Biochem 75(1):181–184. doi:10.1271/Bbb.100687

    Article  CAS  PubMed  Google Scholar 

  • Sineoky SP, Yuzbashev TV, Yuzbasheva EY, Sobolevskaya TI, Laptev IA, Vibornaya TV (2011) A method for producing succinic acid using a yeast belonging to the genus Yarrowia. US patent 8435768 B2

  • Song H, Lee SY (2006) Production of succinic acid by bacterial fermentation. Enzym Microb Technol 39(3):352–361. doi:10.1016/j.enzmictec.2005.11.043

    Article  CAS  Google Scholar 

  • Szeto SSW, Reinke SN, Sykes BD, Lemire BD (2007) Ubiquinone-binding site mutations in the Saccharomyces cerevisiae succinate dehydrogenase generate superoxide and lead to the accumulation of succinate. J Biol Chem 282(37):27518–27526. doi:10.1074/jbc.M700601200

    Article  CAS  PubMed  Google Scholar 

  • Tsugawa R, Nakase T, Kobayash T, Yamashit K, Okumura S (1969) Fermentation of n-paraffins by yeast. 3. Alpha-ketoglutarate productivity of various yeast. Agric Biol Chem Tokyo 33(6):929

    Article  CAS  Google Scholar 

  • Wiebe MG, Rintala E, Tamminen A, Simolin H, Salusjarvi L, Toivari M, Kokkonen JT, Kiuru J, Ketola RA, Jouhten P, Huuskonen A, Maaheimo H, Ruohonen L, Penttila M (2008) Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. FEMS Yeast Res 8(1):140–154. doi:10.1111/j.1567-1364.2007.00234.x

    Article  CAS  PubMed  Google Scholar 

  • Yuzbashev TV, Yuzbasheva EY, Sobolevskaya TI, Laptev IA, Vybornaya TV, Larina AS, Matsui K, Fukui K, Sineoky SP (2010) Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica. Biotechnol Bioeng 107(4):673–682. doi:10.1002/Bit.22859

    Article  CAS  PubMed  Google Scholar 

  • Zeikus JG, Jain MK, Elankovan P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51(5):545–552

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Jost.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jost, B., Holz, M., Aurich, A. et al. The influence of oxygen limitation for the production of succinic acid with recombinant strains of Yarrowia lipolytica . Appl Microbiol Biotechnol 99, 1675–1686 (2015). https://doi.org/10.1007/s00253-014-6252-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6252-z

Keywords

Navigation