Skip to main content

Advertisement

Log in

Fungal aegerolysin-like proteins: distribution, activities, and applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The aegerolysin protein family (from aegerolysin of the mushroom Agrocybe aegerita) comprises proteins of ∼15–20 kDa from various eukaryotic and bacterial taxa. Aegerolysins are inconsistently distributed among fungal species, and variable numbers of homologs have been reported for species within the same genus. As such noncore proteins, without a member of a protein family in each of the sequenced fungi, they can give insight into different species-specific processes. Some aegerolysins have been reported to be hemolytically active against mammalian erythrocytes. However, some function as bi-component proteins that have membrane activity in concert with another protein that contains a membrane attack complex/perforin domain. The function of most of aegerolysins is unknown, although some have been suggested to have a role in development of the organism. Potential biotechnological applications of aegerolysins are already evident, despite the limited scientific knowledge available at present. Some mushroom aegerolysins, for example, can be used as markers to detect and label specific membrane lipids. Others can be used as biomarkers of fungal exposure, where their genes can serve as targets for detection of fungi and their progression during infectious diseases. Antibodies against aegerolysins can also be raised as immuno-diagnostic tools. Aegerolysins have been shown to serve as a species determination tool for fungal phytopathogen isolates in terms of some closely related species, where commonly used internal transcribed spacer barcoding has failed. Moreover, strong promoters that regulate aegerolysin genes can promote secretion of heterologous proteins from fungi and have been successfully applied in simultaneous multi-gene expression techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abad-Diaz-de-Cerio A, Fernandez-Molina JV, Ramirez-Garcia A, Sendino J, Hernando FL, Peman J, Garaizar J, Rementeria A (2013) The aspHS gene as a new target for detecting Aspergillus fumigatus during infections by quantitative real-time PCR. Med Mycol 51:545–554. doi:10.3109/13693786.2012.756989

    Article  CAS  PubMed  Google Scholar 

  • Anderluh G, Kisovec M, Kraševec N, Gilbert RJC (2014) Distribution of MACPF/CDC proteins. Subcell Biochem 80:7–30. doi:10.1007/978-94-017-8881-6_2

    Article  CAS  PubMed  Google Scholar 

  • Arnaud MB, Cerqueira GC, Inglis DO, Skrzypek MS, Binkley J, Chibucos MC, Crabtree J, Howarth C, Orvis J, Shah P, Wymore F, Binkley G, Miyasato SR, Simison M, Sherlock G, Wortman JR (2012) The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources. Nucleic Acids Res 40:D653–659. doi:10.1093/nar/gkr875

    Article  CAS  PubMed  Google Scholar 

  • Bando H, Hisada H, Ishida H, Hata Y, Katakura Y, Kondo A (2011) Isolation of a novel promoter for efficient protein expression by Aspergillus oryzae in solid-state culture. Appl Microbiol Biotechnol 92:561–569. doi:10.1007/s00253-011-3446-5

    Article  CAS  PubMed  Google Scholar 

  • Barloy F, Lecadet MM, Delécluse A (1998) Cloning and sequencing of three new putative toxin genes from Clostridium bifermentans CH18. Gene 211:293–299

    Article  CAS  PubMed  Google Scholar 

  • Berne S, Križaj I, Pohleven F, Turk T, Maček P, Sepčić K (2002) Pleurotus and Agrocybe hemolysins, new proteins hypothetically involved in fungal fruiting. Biochim Biophys Acta 1570:153–159

    Article  CAS  PubMed  Google Scholar 

  • Berne S, Lah L, Sepčić K (2009) Aegerolysins: structure, function, and putative biological role. Protein Sci 18:694–706. doi:10.1002/pro.85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berne S, Pohleven F, Turk T, Sepčić K (2008) Induction of fruiting in oyster mushroom (Pleurotus ostreatus) by polymeric 3-alkylpyridinium salts. Mycol Res 112:1085–1087. doi:10.1016/j.mycres.2008.03.009

    Article  CAS  PubMed  Google Scholar 

  • Berne S, Pohleven J, Vidic I, Rebolj K, Pohleven F, Turk T, Maček P, Sonnenberg A, Sepčić K (2007) Ostreolysin enhances fruiting initiation in the oyster mushroom (Pleurotus ostreatus). Mycol Res 111:1431–1436. doi:10.1016/j.mycres.2007.09.005

    Article  CAS  PubMed  Google Scholar 

  • Berne S, Sepčić K, Anderluh G, Turk T, Maček P, Poklar Ulrih N (2005) Effect of pH on the pore forming activity and conformational stability of ostreolysin, a lipid raft-binding protein from the edible mushroom Pleurotus ostreatus. Biochemistry 44:11137–11147. doi:10.1021/bi051013y

    Article  CAS  PubMed  Google Scholar 

  • Bhat HB, Kishimoto T, Abe M, Makino A, Inaba T, Murate M, Dohmae N, Kurahashi A, Nishibori K, Fujimori F, Greimel P, Ishitsuka R, Kobayashi T (2013) Binding of a pleurotolysin ortholog from Pleurotus eryngii to sphingomyelin and cholesterol-rich membrane domains. J Lipid Res 54:2933–2943. doi:10.1194/jlr.D041731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braaksma M, Martens-Uzunova ES, Punt PJ, Schaap PJ (2010) An inventory of the Aspergillus niger secretome by combining in-silico predictions with shotgun proteomics data. BMC Genomics 11:584. doi:10.1186/1471-2164-11-584

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho YS, Kim JS, Crowley DE, Cho BG (2003) Growth promotion of the edible fungus Pleurotus ostreatus by fluorescent pseudomonads. FEMS Microbiol Lett 218:271–276

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury HH, Rebolj K, Kreft M, Zorec R, Maček P, Sepčić K (2008) Lysophospholipids prevent binding of a cytolytic protein ostreolysin to cholesterol-enriched membrane domains. Toxicon 51:1345–1356. doi:10.1016/j.toxicon.2008.03.010

    Article  CAS  PubMed  Google Scholar 

  • Domondon DL, He W, De Kimpe N, Höfte M, Poppe J (2004) β-Adenosine, a bioactive compound in grass chaff stimulating mushroom production. Phytochemistry 65:181–187. doi:10.1016/j.phytochem.2003.11.004

    Article  CAS  PubMed  Google Scholar 

  • Donohue M, Wei W, Wu J, Zawia NH, Hud N, De Jesus V, Schmechel D, Hettick JM, Beezhold DH, Vesper S (2006) Characterization of nigerlysin, hemolysin produced by Aspergillus niger, and effect on mouse neuronal cells in vitro. Toxicology 219:150–155. doi:10.1016/j.tox.2005.11.013

    Article  CAS  PubMed  Google Scholar 

  • Ebina K, Yokota K, Sakaguchi O (1982) Studies on toxin of Aspergillus fumigatus. XIV. Relationship between Asp-hemolysin and experimental infection for mice. Jpn J Med Mycol 23:246–252

    Article  Google Scholar 

  • Ebina K, Sakagami H, Yokota K, Kondo H (1994) Cloning and nucleotide sequence of cDNA encoding Asp-hemolysin from Aspergillus fumigatus. Biochim Biophys Acta 1219:148–150

    Article  CAS  PubMed  Google Scholar 

  • Erjavec J, Kos J, Ravnikar M, Dreo T, Sabotič J (2012) Proteins of higher fungi—from forest to application. Trends Biotechnol 30:259–273. doi:10.1016/j.tibtech.2012.01.004

    Article  CAS  PubMed  Google Scholar 

  • Fernandez Espinar M, Labarere J (1997) Cloning and sequencing of the Aa-Pri1 gene specifically expressed during fruiting initiation in the edible mushroom Agrocybe aegerita, and analysis of the predicted amino-acid sequence. Curr Genet 32:420–424

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–230. doi:10.1093/nar/gkt1223

    Article  CAS  PubMed  Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194. doi:10.1038/nature10947

    Article  CAS  PubMed  Google Scholar 

  • Gilbert RJC, Mikelj M, Dalla Serra M, Froelich CJ, Anderluh G (2013) Effects of MACPF/CDC proteins on lipid membranes. Cell Mol Life Sci 70:2083–2098. doi:10.1007/s00018-012-1153-8

    Article  CAS  PubMed  Google Scholar 

  • Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M, Goodstein D, Kuo A, Minovitsky S, Nikitin R, Ohm RA, Otillar R, Poliakov A, Ratnere I, Riley R, Smirnova T, Rokhsar D, Dubchak I (2012) The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res 40:D26–D32. doi:10.1093/nar/gkr947

    Article  CAS  PubMed  Google Scholar 

  • Hatzmann M (2011) Constitutive promoter. Application, European Patent EP 2 388 331 A1 23.11.2011 Bulletin 2011/47. 1:1-19

  • Heesemann L (2010) Herstellung und Charakterisierung monoklonaler Antikörper gegen sezernierte Moleküle des human pathogenen Schimmelpilzes Aspergillus fumigatus. Ludwig-Maximillians-Universitat zu Munchen

  • Hisada H, Tsutsumi H, Ishida H, Hata Y (2013) High production of llama variable heavy-chain antibody fragment (VHH) fused to various reader proteins by Aspergillus oryzae. Appl Microbiol Biotechnol 97:761–766. doi:10.1007/s00253-012-4211-0

    Article  CAS  PubMed  Google Scholar 

  • Iwata K, Matsuda A, Wakabayashi K, Fununaga N (1962) Endotoxin-like substance from Aspergillus fumigatus. Jpn J Med Mycol 3:66–73. doi:10.3314/jjmm1960.3.66

    Article  Google Scholar 

  • Joh J-H, Lee S-H, Lee J, Kim K-H, Jeong S-J, Youn W-H, Kim N-K, Son E-S, Cho Y-S, Yoo Y-B, Lee C-S, Kim B-G (2007) Isolation of genes expressed during the developmental stages of the oyster mushroom, Pleurotus ostreatus, using expressed sequence tags. FEMS Microbiol Lett 276:19–25. doi:10.1111/j.1574-6968.2007.00879.x

    Article  CAS  PubMed  Google Scholar 

  • Kelley LA, Sternberg MJE (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  CAS  PubMed  Google Scholar 

  • Kudo Y, Fukuchi Y, Kumagai T, Ebina K, Yokota K (2001) Oxidized low-density lipoprotein-binding specificity of Asp-hemolysin from Aspergillus fumigatus. Biochim Biophys Acta 1568:183–188. doi:10.1016/S0304-4165(01)00217-3

    Article  CAS  PubMed  Google Scholar 

  • Kumagai T, Nagata T, Kudo Y, Fukuchi Y, Ebina K, Yokota K (2001) Cytotoxic activity and cytokine gene induction of Asp-hemolysin to vascular endothelial cells. J Pharm Soc Jpn 121:271–275

    CAS  Google Scholar 

  • Kumagai T, Nagata T, Kudo Y, Fukuchi Y, Ebina K, Yokota K (1999) Cytotoxic activity and cytokine gene induction of Asp-hemolysin to murine macrophages. Jpn J Med Mycol 40:217–222

    Article  CAS  Google Scholar 

  • Kurahashi A, Sato M, Kobayashi T, Nishibori K, Fujimori F (2014) Homologous genes, Pe.pleurotolysin A and Pe.ostreolysin, are both specifically and highly expressed in primordia and young fruiting bodies of Pleurotus eryngii. Mycoscience 55:113–117. doi:10.1016/j.myc.2013.06.005

    Article  CAS  Google Scholar 

  • Lakkireddy KKR, Navarro-González M, Velagapudi R, Kües U (2011) Proteins expressed during hyphal aggregation for fruiting body formation in basidiomycetes. In: Savoie J-M, Foulongne-Oriol M, Largeteau M, Barroso G (eds) Proc. 7th Int. Conf. Mushroom Biol. Mushroom Prod. Arcachon, pp 82-94

  • Lee S-H, Kim B-G, Kim K-J, Lee J-S, Yun D-W, Hahn J-H, Kim G-H, Lee K-H, Suh D-S, Kwon S-T, Lee C-S, Yoo Y-B (2002) Comparative analysis of sequences expressed during the liquid-cultured mycelia and fruit body stages of Pleurotus ostreatus. Fungal Genet Biol 35:115–134. doi:10.1006/fgbi.2001.1310

    Article  CAS  PubMed  Google Scholar 

  • Magae Y (1999) Saponin stimulates fruiting of the edible basidiomycete Pleurotus ostreatus. Biosci Biotechnol Biochem 63:1840–1842

    Article  CAS  PubMed  Google Scholar 

  • Magae Y, Nishimura T, Ohara S (2009) An active compound for fruiting body induction. Curr Chem Biol 3:231–237

    CAS  Google Scholar 

  • Magae Y, Nishimura T, Ohara S (2005) 3-O-Alkyl-D-glucose derivatives induce fruit bodies of Pleurotus ostreatus. Mycol Res 109:374–376. doi:10.1017/S0953756204002096

    Article  CAS  PubMed  Google Scholar 

  • Nayak AP, Green BJ, Beezhold DH (2013) Fungal hemolysins. Med Mycol 51:1–16. doi:10.3109/13693786.2012.698025

    Article  CAS  PubMed  Google Scholar 

  • Nayak AP, Green BJ, Friend S, Beezhold DH (2012) Development of monoclonal antibodies to recombinant terrelysin and characterization of expression in Aspergillus terreus. J Med Microbiol 61:489–499. doi:10.1099/jmm. 0.039511-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayak AP, Blachere FM, Hettick JM, Lukomski S, Schmechel D, Beezhold DH (2011a) Characterization of recombinant terrelysin, a hemolysin of Aspergillus terreus. Mycopathologia 171:23–34. doi:10.1007/s11046-010-9343-0

    Article  CAS  PubMed  Google Scholar 

  • Nayak AP, Green BJ, Janotka E, Hettick JM, Friend S, Vesper SJ, Schmechel D, Beezhold DH (2011b) Monoclonal antibodies to hyphal exoantigens derived from the opportunistic pathogen Aspergillus terreus. Clin Vaccine Immunol 18:1568–1576. doi:10.1128/CVI. 05163-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novak M, Sepčić K, Kraševec N, Križaj I, Maček P, Anderluh G, Guella G, Mancini I (2014) Targeted lipid analysis of haemolytic mycelial extracts of Aspergillus niger. Molecules 19:9051–9069. doi:10.3390/molecules19079051

    Article  PubMed  Google Scholar 

  • Ota K, Butala M, Viero G, Dalla Serra M, Sepčić K, Maček P (2014) Fungal MACPF-like proteins and aegerolysins: bi-component pore-forming proteins? Subcell Biochem 80:271–291

    Article  CAS  PubMed  Google Scholar 

  • Ota K, Leonardi A, Mikelj M, Skočaj M, Wohlschlager T, Künzler M, Aebi M, Narat M, Križaj I, Anderluh G, Sepčić K, Maček P (2013) Membrane cholesterol and sphingomyelin, and ostreolysin A are obligatory for pore-formation by a MACPF/CDC-like pore-forming protein, pleurotolysin B. Biochimie 95:1855–1864. doi:10.1016/j.biochi.2013.06.012

    Article  CAS  PubMed  Google Scholar 

  • Pointing SB, Hyde KD (2001) Bio-exploitation of filamentous fungi. Fungal Diversity Press, Hong Kong

    Google Scholar 

  • Rebolj K, Ulrih NP, Maček P, Sepčić K (2006) Steroid structural requirements for interaction of ostreolysin, a lipid-raft binding cytolysin, with lipid monolayers and bilayers. Biochim Biophys Acta 1758:1662–1670. doi:10.1016/j.bbamem.2006.06.003

    Article  CAS  PubMed  Google Scholar 

  • Resnik N, Sepčić K, Plemenitaš A, Windoffer R, Leube R, Veranič P (2011) Desmosome assembly and cell-cell adhesion are membrane raft-dependent processes. J Biol Chem 286:1499–1507. doi:10.1074/jbc.M110.189464

    Article  CAS  PubMed  Google Scholar 

  • Roberts RG, Bischoff JF, Reymond ST (2011) Differential gene expression in Alternaria gaisen exposed to dark and light. Mycol Prog 11:373–382. doi:10.1007/s11557-011-0752-3

    Article  Google Scholar 

  • Robson DG, van West P, Gadd GM (2007) Exploitation of Fungi. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sakaguchi O, Shimada H, Yokota K (1975) Proceedings: Purification and characteristics of hemolytic toxin from Aspergillus fumigatus. Jpn J Med Sci Biol 28:328–331

    CAS  PubMed  Google Scholar 

  • Sakai M, Miyazaki A, Hakamata H, Sasaki T, Yui S, Yamazaki M, Shichiri M, Horiuchi S (1994) Lysophosphatidylcholine plays an essential role in the mitogenic effect of oxidized low density lipoprotein on murine macrophages. J Biol Chem 269:31430–31435

    CAS  PubMed  Google Scholar 

  • Schnepf HE (2013) Modified Cry34 proteins. US 8,372,803 B2

  • Schnepf HE, Lee S, Dojillo J, Burmeister P, Fencil K, Morera L, Nygaard L, Narva KE, Wolt JD (2005) Characterization of Cry34/Cry35 binary insecticidal proteins from diverse Bacillus thuringiensis strain collections. Appl Environ Microbiol 71:1765–1774. doi:10.1128/AEM. 71.4.1765-1774.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoch CL, Crous PW, Groenewald JZ, Boehm EWA, Burgess TI, De Gruyter J, de Hoog GS, Dixon LJ, Grube M, Gueidan C, Harada Y, Hatakeyama S, Hirayama K, Hosoya T, Huhndorf SM, Hyde KD, Jones EBG, Kohlmeyer J, Kruys A, Li YM, Lücking R, Lumbsch HT, Marvanová L, Mbatchou JS, McVay AH, Miller AN, Mugambi GK, Muggia L, Nelsen MP, Nelson P, Owensby CA, Phillips AJL, Phongpaichit S, Pointing SB, Pujade-Renaud V, Raja HA, Plata ER, Robbertse B, Ruibal C, Sakayaroj J, Sano T, Selbmann L, Shearer CA, Shirouzu T, Slippers B, Suetrong S, Tanaka K, Volkmann-Kohlmeyer B, Wingfield MJ, Wood AR, Woudenberg JHC, Yonezawa H, Zhang Y, Spatafora JW (2009) A class-wide phylogenetic assessment of Dothideomycetes. Stud Mycol 64:1–15S10. doi:10.3114/sim.2009.64.01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109:6241–6246. doi:10.1073/pnas.1117018109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sepčić K, Berne S, Rebolj K, Batista U, Plemenitaš A, Šentjurc M, Maček P (2004) Ostreolysin, a pore-forming protein from the oyster mushroom, interacts specifically with membrane cholesterol-rich lipid domains. FEBS Lett 575:81–85. doi:10.1016/j.febslet.2004.07.093

    Article  PubMed  Google Scholar 

  • Shibata T, Kudou M, Hoshi Y, Kudo A, Nanashima N, Miyairi K (2010) Isolation and characterization of a novel two-component hemolysin, erylysin A and B, from an edible mushroom, Pleurotus eryngii. Toxicon 56:1436–1442. doi:10.1016/j.toxicon.2010.08.010

    Article  CAS  PubMed  Google Scholar 

  • Skočaj M, Bakrač B, Križaj I, Maček P, Anderluh G, Sepčić K (2013) The sensing of membrane microdomains based on pore-forming toxins. Curr Med Chem 20:491–501

    PubMed  Google Scholar 

  • Skočaj M, Resnik N, Grundner M, Ota K, Rojko N, Hodnik V, Anderluh G, Sobota A, Maček P, Veranič P, Sepčić K (2014) Tracking cholesterol/sphingomyelin-rich membrane domains with the ostreolysin A-mCherry protein. PLoS One 9:e92783. doi:10.1371/journal.pone.0092783

    Article  PubMed  PubMed Central  Google Scholar 

  • Suguimoto HH, Barbosa AM, Dekker RF, Castro-Gomez RJ (2001) Veratryl alcohol stimulates fruiting body formation in the oyster mushroom, Pleurotus ostreatus. FEMS Microbiol Lett 194:235–238. doi:10.1111/j.1574-6968.2001.tb09475.x

    Article  CAS  PubMed  Google Scholar 

  • Tomita T, Noguchi K, Mimuro H, Ukaji F, Ito K, Sugawara-Tomita N, Hashimoto Y (2004) Pleurotolysin, a novel sphingomyelin-specific two-component cytolysin from the edible mushroom Pleurotus ostreatus, assembles into a transmembrane pore complex. J Biol Chem 279:26975–26982. doi:10.1074/jbc.M402676200

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay RC, Hofrichter M (1993) Effect of phenol on the mycelial growth and fructification in some of basidiomycetous fungi. J Basic Microbiol 33:343–347

    Article  CAS  PubMed  Google Scholar 

  • Vesper S, Vesper M (2004) Possible role of fungal hemolysins in sick building syndrome. Adv Appl Microbiol 55:191–208

    Article  CAS  PubMed  Google Scholar 

  • Vidic I, Berne S, Drobne D, Maček P, Frangež R, Turk T, Štrus J, Sepčić K (2005) Temporal and spatial expression of ostreolysin during development of the oyster mushroom (Pleurotus ostreatus). Mycol Res 109:377–382. doi:10.1017/S0953756204002187

    Article  CAS  PubMed  Google Scholar 

  • Wartenberg D, Lapp K, Jacobsen ID, Dahse H-M, Kniemeyer O, Heinekamp T, Brakhage AA (2011) Secretome analysis of Aspergillus fumigatus reveals Asp-hemolysin as a major secreted protein. Int J Med Microbiol 301:602–611. doi:10.1016/j.ijmm.2011.04.016

    Article  CAS  PubMed  Google Scholar 

  • Yamada R, Yoshie T, Wakai S, Asai-Nakashima N, Okazaki F, Ogino C, Hisada H, Tsutsumi H, Hata Y, Kondo A (2014) Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose. Microb Cell Fact 13:71. doi:10.1186/1475-2859-13-71

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank to Sabina Belc for genome mining, Saša Režonja and Nina Sluga for the hemolytic activity tests, Dr. Christopher Berrie for critical reading and English language editing, and the Slovenian Research Agency for financial support.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nada Kraševec or Kristina Sepčić.

Additional information

Maruša Novak and Nada Kraševec contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novak, M., Kraševec, N., Skočaj, M. et al. Fungal aegerolysin-like proteins: distribution, activities, and applications. Appl Microbiol Biotechnol 99, 601–610 (2015). https://doi.org/10.1007/s00253-014-6239-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6239-9

Keywords

Navigation