Skip to main content
Log in

Development of an enhanced chromosomal expression system based on porin synthesis operon for halophile Halomonas sp.

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Since halophile Halomonas spp. can grow contamination free in seawater under unsterile and continuous conditions, it holds great promise for industrial biotechnology to produce low-cost chemicals in an economic way. Yet, metabolic engineering methods are urgently needed for Halomonas spp. It is commonly known that chromosomal expression is more stable yet weaker than plasmid one is. To overcome this challenge, a novel chromosomal expression method was developed for halophile Halomonas TD01 and its derivatives based on a strongly expressed porin gene as a site for external gene integration. The gene of interest was inserted downstream the porin gene, forming an artificial operon porin-inserted gene. This chromosome expression system was proven functional by some examples: First, chromosomal expression of heterologous polyhydroxybutyrate (PHB) synthase gene phaC Re from Ralstonia eutropha completely restored the PHB accumulation level in endogenous phaC knockout mutant of Halomonas TD01. The integrated phaC Re was expressed at the highest level when inserted at the locus of porin compared with insertions in other chromosome locations. Second, an inducible expression system was constructed in phaC-deleted Halomonas TD01 by integrating the lac repressor gene (lacI) into the porin site in the host chromosome. The native porin promoter was inserted with the key 21 bp DNA of lac operator (lacO) sequence to become an inducible promoter encoded in a plasmid. This inducible system allowed on-off switch of gene expression in Halomonas TD strains. Thus, the stable and strong chromosomal expression method in Halomonas TD spp. was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Birnbaum SBJ (1991) Plasmid presence changes the relative levels of many host cell proteins and ribosome components in recombinant Escherichia coli. Biotechnol Bioeng 37:736–745

    Article  PubMed  CAS  Google Scholar 

  • Cai L, Tan D, Aibaidula G, Dong XR, Chen JC, Tian WX, Chen GQ (2011) Comparative genomics study of polyhydroxyalkanoates (PHA) and ectoine relevant genes from Halomonas sp. TD01 revealed extensive horizontal gene transfer events and co-evolutionary relationships. Microb Cell Factories 10:88

    Article  CAS  Google Scholar 

  • Chen GQ (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446

    Article  PubMed  CAS  Google Scholar 

  • Chen GQ, Patel M (2012) Plastics derived from biological sources: present and future—a technical and environmental review. Chem Rev 112:2082–2099

    Article  PubMed  CAS  Google Scholar 

  • Chen PT, Shaw JF, Chao YP, Ho THD, Yu SM (2010) Construction of chromosomally located T7 expression system for production of heterologous secreted proteins in Bacillus subtilis. J Agric Food Chem 58:5392–5399

    Article  PubMed  CAS  Google Scholar 

  • Chiang CJ, Chen PT, Chao YP (2008) Replicon-free and markerless methods for genomic insertion of DNAs in phage attachment sites and controlled expression of chromosomal genes in Escherichia coli. Biotechnol Bioeng 101:985–995

    Article  PubMed  CAS  Google Scholar 

  • Cohen SN, Chang AC, Hsu L (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A 69:2110–2114

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cohen S, Chang A, Boyer H, Helling R (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A 70:3240–3244

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Don TM, Chen CW, Clan TH (2006) Preparation and characterization of poly(hydroxyalkanoate) from the fermentation of Haloferax mediterranei. J Biomater Sci Polym Ed 17:1425–1438

    Article  PubMed  CAS  Google Scholar 

  • Friehs K (2004) Plasmid copy number and plasmid stability. In: Scheper TH (ed) New Trends and Developments in Biochemical Engineering, vol. 86. Springer Berlin, Heidelberg, pp 47–82

    Chapter  Google Scholar 

  • Fu XZ, Tan D, Aibaidula G, Wu Q, Chen JC, Chen GQ (2014) Development of Halomonas TD01 as a host for open production of chemicals. Metab Eng 23:78–91

    Article  PubMed  CAS  Google Scholar 

  • Guido NJ, Wang X, Adalsteinsson D, McMillen D, Hasty J, Cantor CR, Elston T, Collins JJ (2006) A bottom-up approach to gene regulation. Nature 439:856–860

    Article  PubMed  CAS  Google Scholar 

  • Hazer B, Steinbüchel A (2007) Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol 74:1–12

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann F, Rinas U (2004) Stress induced by recombinant protein production in Escherichia coli. Adv Biochem Eng Biotechnol 89:73–92

    PubMed  CAS  Google Scholar 

  • Imanaka T, Tanaka T, Tsunekawa H, Aiba S (1981) Cloning of the genes for penicillinase, penP and penI, of Bacillus licheniformis in some vector plasmids and their expression in Escherichia coli, Bacillus subtilis, and Bacillus licheniformis. J Bacteriol 147:776–786

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56:403–432

    Article  PubMed  CAS  Google Scholar 

  • Julian A, Hanak J, Cranenburgh RM (2001) Antibiotic-free plasmid selection and maintenance in bacteria. In: Merten O-W, Mattanovich D, Lang C, Larsson G, Neubauer P, Porro D, Postma P, Teixeira DMJ, Cole JA (eds) Recombinant protein production with prokaryotic and eukaryotic cells: a comparative view on host physiology. Kluwer Academic, Dordrecht, pp 114–124

    Google Scholar 

  • Kawata Y, Ando H, Matsushita I, Tsubota J (2014) Efficient secretion of (R)-3-hydroxybutyric acid from Halomonas sp. KM-1 by nitrate fed-batch cultivation with glucose under microaerobic conditions. Bioresour Technol 156:400–403

    Article  PubMed  CAS  Google Scholar 

  • Keasling JD (2008) Synthetic biology for synthetic chemistry. ACS Chem Biol 3:64–76

    Article  PubMed  CAS  Google Scholar 

  • Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14

    Article  PubMed  CAS  Google Scholar 

  • Lemuth K, Steuer K, Albermann C (2011) Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin. Microb Cell Factories 10:29

    Article  CAS  Google Scholar 

  • Lewis M (2005) The lac repressor. C R Biol 328:521–548

    Article  PubMed  CAS  Google Scholar 

  • Mairhofer J, Scharl T, Marisch K, Cserjan-Puschmann M, Striedner G (2013) Comparative transcription profiling and in-depth characterization of plasmid-based and plasmid-free Escherichia coli expression systems under production conditions. Appl Environ Microbiol 79:3802–3812

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Manachini PL, Fortina MG (1998) Production in sea-water of thermostable alkaline proteases by a halotolerant strain of Bacillus licheniformis. Biotechnol Lett 20:565–568

    Article  CAS  Google Scholar 

  • Mellado E, Nieto JJ, Ventosa A (1995) Construction of novel shuttle vectors for use between moderately halophilic bacteria and Escherichia coli. Plasmid 34:157–164

    Article  PubMed  CAS  Google Scholar 

  • Nagayoshi C, Tokunaga H, Hayashi A, Harazono H, Hamasaki K, Ando A, Tokunaga M (2006) Efficient expression of haloarchaeal nucleoside diphosphate kinase via strong porin promoter in moderately halophilic bacteria. Protein Pept Lett 13:611–615

    Article  PubMed  CAS  Google Scholar 

  • Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the bacterial cell: a molecular approach. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Olson P, Zhang Y, Olson D, Owens A, Cohen P, Nguyen K, Ye JJ, Bass S, Mascarenhas D (1998) High-level expression of eukaryotic polypeptides from bacterial chromosomes. Protein Expr Purif 14:160–166

    Article  PubMed  CAS  Google Scholar 

  • Panda AK, Khan RH, Rao KBCA, Totey SM (1999) Kinetics of inclusion body production in batch and high cell density fed-batch culture of Escherichia coli expressing ovine growth hormone. J Biotechnol 75:161–172

    Article  PubMed  CAS  Google Scholar 

  • Peredelchuk MY, Bennett GNA (1997) A method for chonstruction of E. coli strains with multiple DNA insertions in the chromosome. Gene 187:231–238

    Article  PubMed  CAS  Google Scholar 

  • Posfai G, Kolisnychenko V, Bereczki Z, Blattner FR (1999) Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Res 27:4409–4415

  • Prabhu J, Schauwecker F, Grammel N, Keller U, Bernhard M (2004) Functional expression of the ectoine hydroxylase gene (thpD) from Streptomyces chrysomallus in Halomonas elongata. Appl Environ Microbiol 70:3130–3132

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Quillaguamán J, Guzmán H, Van-Thuoc D, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85:1687–1696

    Article  PubMed  Google Scholar 

  • Rehm BHA (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8:578–592

    Article  PubMed  CAS  Google Scholar 

  • Rose JK, Shafferman A (1981) Conditional expression of the vesicular stomatitis-virus glycoprotein gene in Escherichia coli. Proc Natl Acad Sci U S A 78:6670–6674

  • Silva-Rocha R, Martínez-García E, Calles B, Chavarría M, Arce-Rodríguez A, de las Heras A, Páez-Espino AD, Durante-Rodríguez G, Kim J, Nikel PI, Platero R, de Lorenzo V (2013) The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res 41:666–675

    Article  Google Scholar 

  • Simon R (1994) High frequency mobilization of gram-negative bacterial replicons by the in vivo constructed Tn5-Mob transposon. Mol Gen Genet 196:413–420

    Article  Google Scholar 

  • Spiekermann P, Rehm BH, Kalscheuer R, Baumeister D, Steinbüchel A (1999) A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171:73–80

    Article  PubMed  CAS  Google Scholar 

  • Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228

    Article  Google Scholar 

  • Striedner G, Pfaffenzeller I, Markus L, Nemecek S, Grabherr R, Bayer K (2010) Plasmid-free T7-based Escherichia coli expression systems. Biotechnol Bioeng 105:786–794

    PubMed  CAS  Google Scholar 

  • Tan D, Xue YS, Aibaidula G, Chen GQ (2011) Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresour Technol 102:8130–8136

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga H, Mitsuo K, Kamekura M, Tokunaga M (2004) Major outer membrane proteins in moderately halophilic eubacteria of genera Chromohalobacter and Halomonas. J Basic Microbiol 44:232–240

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga H, Arakawa T, Tokunaga M (2010a) Novel soluble expression technologies derived from unique properties of halophilic proteins. Appl Microbiol Biotechnol 88:1223–1231

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga M, Arakawa T, Tokunaga H (2010b) Recombinant expression in moderate halophiles. Curr Pharm Biotechnol 11:259–266

    Article  PubMed  CAS  Google Scholar 

  • Tyo KEJ, Ajikumar PK, Stephanopoulos G (2009) Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nat Biotechnol 27:760–765

    Article  PubMed  CAS  Google Scholar 

  • Vargas C, Castillo RF, Cánovas D, Ventosa A, Nieto JJ (1995) Isolation of cryptic plasmids from moderately halophilic eubacteria of the genus Halomonas. Characterization of a small plasmid from H. elongata and its use for shuttle vector construction. Mol Gen Genet 246:411–418

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Ma X, Zhu H, Li A, Du G, Chen J (2012) Available methods for assembling expression cassettes for synthetic biology. Appl Microbiol Biotechnol 93:1853–1863

    Article  PubMed  CAS  Google Scholar 

  • Yansura DG, Henner DJ (1984) Use of Escherichia coli lac repressor and operator to control gene expression in Bacillus subtilis. Proc Natl Acad Sci U S A 81:439–443

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Professor Víctor de Lorenzo of Centro Nacional de Biotecnología (CNB-CSIC) in Spain for the generous donation of plasmid pSEVA341. This research was financially supported by National High Tech 863 Grants (Grant No. 2012BAD32B02 to JCC) and 973 Basic Research Fund (Grant No. 2012CB725201 to GQC and No. 2012CB725204 to QW), as well as a Grant from National Natural Science Foundation of China (Grant No. 31270146 to GQC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Qiang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, J., Fu, XZ., Wu, Q. et al. Development of an enhanced chromosomal expression system based on porin synthesis operon for halophile Halomonas sp.. Appl Microbiol Biotechnol 98, 8987–8997 (2014). https://doi.org/10.1007/s00253-014-5959-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5959-1

Keywords

Navigation