Skip to main content

Advertisement

Log in

Caecal environment of rats fed far East Asian-modelled diets

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

To clarify the effect of type of foods on the intestinal environment, Far East Asian- (FEA; rich in rice starch, soy protein and soy oil) and Far East Asian marine- (FEAM; rich in rice starch, fish meal, fish oil and brown alga) modelled diets and sucrose, casein and beef tallow-rich (SCB) diet were prepared. After the 2-week administration of diets in rats, caecal organic acids and putrefactive compounds (ammonia, indole, phenol and H2S, which are regarded as putative risk factors for tumours) were determined. The caecal microbiota was also analyzed using denaturing gradient gel electrophoresis and pyrosequencing with bar-coded primers targeting the bacterial 16S rRNA gene. Levels of n-butyrate, acetate, indole and phenol were high in rats fed FEA. On the other hand, H2S was clearly suppressed by both FEA and FEAM comparing with SCB. These results suggest that FEAM is preferable to FEA for optimal intestinal environment and host health. Both microbial analyses showed that the diversity of microbiota in the FEAM group was lower than in the other diet groups. Ratio of Firmicutes, Bacteroidetes and Proteobacteria in the SCB group was about 5:4:1. Firmicutes, particularly Lachnospiraceae, was promoted by FEA and FEAM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilera AA, Díaz GH, Barceleta ML, Guerrero OA, Roes RMO (2004) Effects of fish oil on hypertension, plasma lipids, and tumour necrosis factor-α in rats with sucrose-induced metabolic syndrome. J Nutr Biochem 15:350–357. doi:10.1016/j.jnutbio.2003.12.008

    Article  CAS  PubMed  Google Scholar 

  • An C, Takahashi H, Kimura B, Kuda T (2010) Comparison of PCR-DGGE and PCR-SSCP analysis for bacterial flora of Japanese traditional fermented fish products, aji-narezushi and iwashi-nukazuke. J Sci Food Agric 90:1796–1801. doi:10.1002/jsfa.4015

    CAS  PubMed  Google Scholar 

  • An C, Kuda T, Yazaki T, Takahashi H, Kimura B (2013a) FLX pyrosequencing analysis of the effects of the brown-algal fermentable polysaccharides alginate and laminaran on rat caecal microbiotas. Appl Environ Microbiol 79:860–866. doi:10.1128/AEM.02354-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • An C, Yazaki T, Takahashi H, Kuda T, Kimura B (2013b) Diet-induced changes in alginate- and laminaran-fermenting bacteria levels in the caecal contents of rats. J Funct Foods 5:389–394. doi:10.1016/j.jff.2012.11.011

    Article  CAS  Google Scholar 

  • An C, Kuda T, Yazaki T, Takahashi H, Kimura B (2014) Caecal fermentation, putrefaction and microbiotas in rats fed milk casein, soy protein or fish meal. Appl Microbiol Biotechnol. doi:10.1007/s00253-013-5271-5

    Google Scholar 

  • Biagi E, Candela M, Franceschi C, Brigidi P (2011) The aging gut microbiota: new perspectives. Ageing Res Rev 10:428–429. doi:10.1016/j.arr.2011.03.004

    Article  PubMed  Google Scholar 

  • Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, Reading NC, Villablanca EJ, Wang S, Mora JR, Umesaki Y, Mathis D, Benoist C, Relman DA, Kasper DL (2012) Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149:1578–1593. doi:10.1016/j.cell.2012.04.037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davila AM, Blachier F, Gotteland M, Andriamihaja M, Benetti PH, Sanz Y (2013) Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol Res 68:95–107. doi:10.1016/j.phrs.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  • De-Filippo CD, Cavalieri D, Paola MD, Ramazzoth M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107:14691–14696. doi:10.1073/pnas.1005963107

    Article  PubMed Central  PubMed  Google Scholar 

  • Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:e280. doi:10.1371/journal. pbio.0060280

    Article  PubMed Central  PubMed  Google Scholar 

  • Feng T, Elson CO, Cong Y (2011) Treg cell–IgA axis in maintenance of host immune homeostasis with microbiota. Int Immunopharmacol 11:589–592. doi:10.1016/j.intimp.2010.11.016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kibe R, Sakamoto M, Yokota H, Ishikawa H, Aiba Y, Koga Y, Benno Y (2005) Movement and fixation of intestinal microbiota after administration of human feces to germfree mice. Appl Environ Microbiol 71:3171–3178. doi:10.1128/AEM.71.6.3171-3178.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim NY, Song EJ, Kwon DY, Kim HP, Heo MY (2008) Antioxidant and antigenotoxic activities of Korean fermented soybean. Food Chem Toxicol 46:1184–1189. doi:10.1016/j.fct.2007.12.003

    Article  CAS  PubMed  Google Scholar 

  • Kuda T, Ikemori T (2009) Minerals, polysaccharides and antioxidant properties of aqueous solutions obtained from macroalgal beach-casts in the Noto Peninsula, Ishikawa, Japan. Food Chem 112:575–581. doi:10.1016/j.foodchem.2008.06.008

    Article  CAS  Google Scholar 

  • Kuda T, Yano T (2009) Changes of radical-scavenging capacity and ferrous reducing power in chub mackerel Scomber japonicus and Pacific saury Cololabis saira during 4 °C storage and retorting. LWT Food Sci Technol 42:1070–1075. doi:10.1016/j.lwt.2009.02.005

    Article  CAS  Google Scholar 

  • Kuda T, Fujii T, Hasegawa A, Okuzumi M (1992) Effects of degraded products of laminaran by Clostridium ramosum on the growth of intestinal bacteria. Nippon Suisan Gakkaishi 58:1307–1311

    Article  Google Scholar 

  • Kuda T, Enomoto T, Yano T, Fujii T (2000) Caecal environment and TBARS level in mice fed corn oil, beef tallow and menhaden fish oil. J Nutr Vitaminol 46:65–70

    Article  CAS  Google Scholar 

  • Kuda T, Yano T, Matsuda N, Nishizawa M (2005) Inhibitory effects of laminaran and low molecular alginate against the putrefactive compounds produced by intestinal microflora in vitro and in rats. Food Chem 91:745–749. doi:10.1016/j.foodchem.2004.06.047

    Article  CAS  Google Scholar 

  • Kuda T, Kunii T, Goto H, Suzuki T, Yano T (2007) Varieties of antioxidant and antibacterial properties of Ecklonia stolonifera and Ecklonia kurome products harvested and processed in the Noto peninsula, Japan. Food Chem 103:900–905. doi:10.1016/j.foodchem.2006.09.042

    Article  CAS  Google Scholar 

  • Kuda T, Kaneko N, Yano T, Mori M (2010) Induction of superoxide anion radical scavenging capacity in Japanese white radish juice and milk by Lactobacillus plantarum isolated from aji-narezushi and kaburazushi. Food Chem 120:517–522. doi:10.1016/j.foodchem.2009.10.046

    Article  CAS  Google Scholar 

  • Kuda T, Nakamura S, An C, Takahashi H, Kimura B (2012a) Effect of soy and milk protein-related compounds on Listeria monocytogenes infection in human enterocyte Caco-2 cells and A/J mice. Food Chem 134:1719–1723. doi:10.1016/j.foodchem.2012.03.031

    Article  CAS  PubMed  Google Scholar 

  • Kuda T, Nakamura S, An C, Takahashi H, Kimura B, Nishizawa M (2012b) Effects of holdfast of Laminaria japonica on Listeria invasion on enterocyte-like Caco-2 cells and NO production of macrophage RAW 264.7 cells. Appl Biochem Biotechnol 168:928–935. doi:10.1007/s12010-012-9831-4

    Article  CAS  PubMed  Google Scholar 

  • Kulagina EV, Efimov BA, Maximov PY, Kafarskaia LI (2012) Species composition of Bacteroidales order bacteria in the feces of healthy people of various ages. Biosci Biotechnol Biochem 76:169–171. doi:10.1271/bbb.110434

    Article  CAS  PubMed  Google Scholar 

  • Lee GH, Rhee MS, Chang DH, Lee J, Kim S, Yoon MH, Kim BC (2013) Oscillibacter ruminantium sp. nov., isolated from the rumen of Korean native cattle. Int J Syst Evol Microbiol 63:1942–1946. doi:10.1099/ijs.0.041749-0

    Article  CAS  PubMed  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Human gut microbes associated with obesity. Nature 444:1022–1023. doi:10.1126/science.1155725

    Article  CAS  PubMed  Google Scholar 

  • Lombard GL, Dowell VR (1983) Comparison of three reagents for detecting indole production by anaerobic bacteria in microtest systems. J Clin Microbiol 18:609–613

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martínez I, Wallace G, Zhang C, Legge R, Benson AK, Carr TP, Moriyama EN, Walter J (2009) Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Appl Environ Microbiol 75:4175–4184. doi:10.1128/AEM.00380-09

    Article  PubMed Central  PubMed  Google Scholar 

  • Middelbos IS, Boler BMV, Qu A, White BA, Swanson KS, Fahey GC Jr (2010) Phylogenetic characterization of fecal microbial communities of dogs fed diets with or without supplemental dietary fiber using 454 pyrosequencing. PloS One 5:e9768. doi:10.1371/journal.pone.0009768

    Article  PubMed Central  PubMed  Google Scholar 

  • Miriam B, Buenviaje MD (1989) Quantitative sputum culture and gram stain: pulmonary infection vs. colonization. Philipp J Microbiol Infect Dis 18:350–356

    Google Scholar 

  • Morishita Y (1990) Structure and function of the intestinal flora. Asakurasyoten, Tokyo, pp 116–126, in Japanese

    Google Scholar 

  • Murata M, Sano Y, Ishihara K, Uchida M (2002) Dietary fish oil and Undaria pinnatifida (wakame) synergistically decrease rat serum and liver triacylglycerol. J Nutr 132:742–747

    CAS  PubMed  Google Scholar 

  • Ogawa K, Tsubono Y, Nishino Y, Watanabe Y, Ohkubo T, Watanabe T, Nakatsuka H, Takahashi N, Kawamura M, Tsuji I, Hisamichi S (2002) Dietary sources of nutrient consumption in a rural Japanese population. J Epidemiol 12:1–8

    Article  PubMed  Google Scholar 

  • Poothullil JM (1993) Obesity, hyperlipidemia and non-insulin-dependent diabetes: a unified theory. Neurosci Biobehav Rev 17:85–89

    Article  CAS  PubMed  Google Scholar 

  • Salyers AA, Vercellotti JR, West SE, Wilkins TD (1977) Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl Environ Microbiol 33:319–322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simrén M, Barbara G, Flint HJ, Spiegel BMR, Spiller RC, Vanner S, Verdu EF, Whorwell PJ, Zoetendal EG, Rome Foundation Committee (2013) Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut 62:159–176. doi:10.1136/gutjnl-2012-302167

    Article  PubMed Central  PubMed  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core intestinal microbiome in obese and lean twins. Nature 457:480–484. doi:10.1038/nature07540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van den Bogert B, de Vos WM, Zoetendal EG, Kleerebezem M (2011) Microarray analysis and barcoded pyrosequencing provide consistent microbial profiles depending on the source of human intestinal samples. Appl Environ Microbiol 77:2071–2080. doi:10.1128/AEM.02477-10

    Article  PubMed Central  PubMed  Google Scholar 

  • Varel VH, Fryda SJ, Robinson IR (1984) Cellulolytic bacteria from pig large intestine. Appl Environ Microbiol 47:219–221

    CAS  PubMed Central  PubMed  Google Scholar 

  • Willing BP, Van Kessel AG (2010) Host pathways for recognition: establishing gastrointestinal microbiota as relevant in animal health and nutrition. Livest Sci 133:82–91. doi:10.1016/j.livsci.2010.06.031

    Article  Google Scholar 

  • Wylie KM, Truly RM, Sharpton TJ, Mihindukulasuriya KA (2012) Novel bacterial taxa in the human microbiome. PLoS One 7:e35294. doi:10.1371/journal.pone.0035294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The present study was supported in part by the Ministry of Education, Science, Sports and Culture, Japan, Grant-in-Aid for Scientific Research (C), #25450300, 2013–2015 and was also supported by a 2013 Grant from Fuji Foundation for Protein Research (Osaka, Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, C., Kuda, T., Yazaki, T. et al. Caecal environment of rats fed far East Asian-modelled diets. Appl Microbiol Biotechnol 98, 4701–4709 (2014). https://doi.org/10.1007/s00253-014-5535-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5535-8

Keywords

Navigation