Skip to main content

Advertisement

Log in

Progress in engineering acid stress resistance of lactic acid bacteria

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Lactic acid bacteria (LAB) are widely used for the production of a variety of fermented foods, and are considered as probiotic due to their health-promoting effect. However, LAB encounter various environmental stresses both in industrial fermentation and application, among which acid stress is one of the most important survival challenges. Improving the acid stress resistance may contribute to the application and function of probiotic action to the host. Recently, the advent of genomics, functional genomics and high-throughput technologies have allowed for the understanding of acid tolerance mechanisms at a systems level, and many method to improve acid tolerance have been developed. This review describes the current progress in engineering acid stress resistance of LAB. Special emphasis is placed on engineering cellular microenvironment (engineering amino acid metabolism, introduction of exogenous biosynthetic capacity, and overproduction of stress response proteins) and maintaining cell membrane functionality. Moreover, strategies to improve acid tolerance and the related physiological mechanisms are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31:877–902

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto S, Al-Mahin A, Higashi C, Matsumoto S, Sonomoto K (2010) Improvement of multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 under conditions of thermal stress by heterologous expression of Escherichia coli dnaK. Appl Environ Microb 76(13):4277–4285

    Article  Google Scholar 

  • Berezina OV, Zakharova NV, Brandt A, Yarotsky SV, Schwarz WH, Zverlov VV (2010) Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis. Appl Microbiol Biotechnol 87(2):635–646

    Article  CAS  PubMed  Google Scholar 

  • Beshkova D, Frengova G (2012) Bacteriocins from lactic acid bacteria: microorganisms of potential biotechnological importance for the dairy industry. Eng Life Sci 12(4):419–432

    Article  CAS  Google Scholar 

  • Bongers RS, Hoefnagel MH, Kleerebezem M (2005) High-level acetaldehyde production in Lactococcus lactis by metabolic engineering. Appl Environ Microbiol 71(2):1109–1113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Broadbent JR, Larsen RL, Deibel V, Steele JL (2010) Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress. J Bacteriol 192:2445–2458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burgess C, O'Connell-Motherway M, Sybesma W, Hugenholtz J, Van Sinderen D (2004) Riboflavin production in Lactococcus lactis: potential for in situ production of vitamin-enriched foods. Appl Environ Microbiol 70(10):5769–5777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burne R, Marquis R (2000) Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol Lett 193(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Cardoso FS, Gaspar P, Hugenholtz J, Ramos A, Santos H (2004) Enhancement of trehalose production in dairy propionibacteria through manipulation of environmental conditions. Int J Food Microbiol 91(2):195–204

    Article  CAS  PubMed  Google Scholar 

  • Carvalho AL, Cardoso FS, Bohn A, Neves AR, Santos H (2011) Engineering trehalose synthesis in Lactococcus lactis for improved stress tolerance. Appl Environ Microbiol 77:4189–4199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang YY, Cronan JE (1999) Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol Microbiol 33(2):249–259

    Article  CAS  PubMed  Google Scholar 

  • Cho SY, Park MJ, Kim KM, Ryu J-H, Park HJ (2011) Production of high γ-aminobutyric acid (GABA) sour kimchi using lactic acid bacteria isolated from Mukeunjee kimchi. Food Sci Biotechnol 20(2):403–408

    Article  CAS  Google Scholar 

  • Claudia S (2008) Contribution of citrate metabolism to the growth of Lactococcus lactis CRL264 at low pH. Appl Environ Microbiol 74(4):1136

    Article  Google Scholar 

  • Corcoran B, Stanton C, Fitzgerald G, Ross R (2005) Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl Environ Microbiol 71(6):3060–3067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Corcoran B, Stanton C, Fitzgerald G, Ross R (2007) Growth of probiotic lactobacilli in the presence of oleic acid enhances subsequent survival in gastric juice. Microbiology 153(1):291–299

    Article  CAS  PubMed  Google Scholar 

  • Cui F, Li Y, Wan C (2011) Lactic acid production from corn stover using mixed cultures of Lactobacillus rhamnosus and Lactobacillus brevis. Bioresource Technol 102(2):1831–1836

    Article  CAS  Google Scholar 

  • De Angelis M, Bini L, Pallini V, Cocconcelli PS, Gobbetti M (2001) The acid-stress response in Lactobacillus sanfranciscensis CB1. Microbiology 147:1863–1873

    PubMed  Google Scholar 

  • De Angelis M, Di Cagno R, Huet C, Crecchio C, Fox P, Gobbetti M (2004) Heat shock response in Lactobacillus plantarum. Appl Environ Microbiol 70(3):1336–1346

    Article  PubMed Central  PubMed  Google Scholar 

  • De Boeck R, Sarmiento-Rubiano LA, Nadal I, Monedero V, Pérez-Martínez G, Yebra MJ (2010) Sorbitol production from lactose by engineered Lactobacillus casei deficient in sorbitol transport system and mannitol-1-phosphate dehydrogenase. Appl Microbiol Biotechnol 85(6):1915–1922

    Article  CAS  PubMed  Google Scholar 

  • Desmond C, Ross R, O'Callaghan E, Fitzgerald G, Stanton C (2002) Improved survival of Lactobacillus paracasei NFBC 338 in spray-dried powders containing gum acacia. J Appl Microbiol 93(6):1003–1011

    Article  CAS  PubMed  Google Scholar 

  • Fong SS, Joyce AR, Palsson BO (2005) Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states. Genome Res 15(10):1365–1372. doi:10.1101/gr.3832305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fozo EM, Quivey RG (2004) The fabM gene product of Streptococcus mutans is responsible for the synthesis of monounsaturated fatty acids and is necessary for survival at low pH. J Bacteriol 186(13):4152–4158. doi:10.1128/jb.186.13.4152-4158.2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fu RY, Bongers RS, Van Swam II, Chen J, Molenaar D, Kleerebezem M, Hugenholtz J, Li Y (2006) Introducing glutathione biosynthetic capability into Lactococcus lactis subsp. cremoris NZ9000 improves the oxidative-stress resistance of the host. Metab Eng 8(6):662–671

    Article  CAS  PubMed  Google Scholar 

  • Fulde M, Willenborg J, de Greeff A, Benga L, Smith HE, Valentin-Weigand P, Goethe R (2011) ArgR is an essential local transcriptional regulator of the arcABC operon in Streptococcus suis and is crucial for biological fitness in an acidic environment. Microbiol 157(2):572–582

    Article  CAS  Google Scholar 

  • Ganesan B, Weimer BC (2004) Role of aminotransferase IlvE in production of branched-chain fatty acids by Lactococcus lactis subsp. lactis. Appl Environ Microbiol 70(1):638–641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gaspar P, Carvalho AL, Vinga S, Santos H, Neves AR (2013) From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnol Adv 31(6):764–788

    Article  CAS  PubMed  Google Scholar 

  • Gaspar P, Neves AR, Gasson MJ, Shearman CA, Santos H (2011) High yields of 2, 3-butanediol and mannitol in Lactococcus lactis through engineering of NAD+ cofactor recycling. Appl Environ Microbiol 77(19):6826–6835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo T, Kong J, Zhang L, Zhang C, Hu S (2012) Fine tuning of the lactate and diacetyl production through promoter engineering in Lactococcus lactis. PLoS One 7(4):e36296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hartke A, Bouche S, Giard JC, Benachour A, Boutibonnes P, Auffray Y (1996) The lactic acid stress response of Lactococcus lactis subsp. lactis. Curr Microbiol 33(3):194–199

    Article  CAS  PubMed  Google Scholar 

  • Higuchi T, Hayashi HU, Abe K (1997) Exchange of glutamate and gamma-aminobutyrate in a Lactobacillus strain. J Bacteriol 179(10):3362–3364

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu Y, Lu P, Zhang Y, Li L, Chen S (2010) Characterization of an aspartate-dependent acid survival system in Yersinia pseudotuberculosis. FEBS Lett 584(11):2311–2314

    Article  CAS  PubMed  Google Scholar 

  • Kim JE, Eom H-J, Kim Y, Ahn JE, Kim JH, Han NS (2012) Enhancing acid tolerance of Leuconostoc mesenteroides with glutathione. Biotechnol Lett 34(4):683–687

    Article  CAS  PubMed  Google Scholar 

  • Ladero V, Ramos A, Wiersma A, Goffin P, Schanck A, Kleerebezem M, Hugenholtz J, Smid EJ, Hols P (2007) High-level production of the low-calorie sugar sorbitol by Lactobacillus plantarum through metabolic engineering. Appl Environ Microbiol 73(6):1864–1872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lebeer S, Vanderleyden J, De Keersmaecker SCJ (2008) Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol R 72(4):728–764

    Article  CAS  Google Scholar 

  • Li Y, Hugenholtz J, Abee T, Molenaar D (2003) Glutathione protects Lactococcus lactis against oxidative stress. Appl Environ Microbiol 69(10):5739–5745

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu S, Nichols NN, Dien BS, Cotta MA (2006) Metabolic engineering of a Lactobacillus plantarum double ldh knockout strain for enhanced ethanol production. J Ind Microbiol Biotechnol 33(1):1–7

    Article  PubMed  Google Scholar 

  • Martínez-Cuesta M, Gasson M, Narbad A (2005) Heterologous expression of the plant coumarate: CoA ligase in Lactococcus lactis. Lett Appl Microbiol 40(1):44–49

    Article  PubMed  Google Scholar 

  • Matsui R, Cvitkovitch D (2010) Acid tolerance mechanisms utilized by Streptococcus mutans. Future Microbiol 5(3):403–417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mills DA, Rawsthorne H, Parker C, Tamir D, Makarova K (2005) Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking. FEMS Microbiol Rev 29(3):465–475

    CAS  PubMed  Google Scholar 

  • Monedero V, Pérez-Martínez G, Yebra MJ (2010) Perspectives of engineering lactic acid bacteria for biotechnological polyol production. Appl Microbiol Biotechnol 86(4):1003–1015

    Article  CAS  PubMed  Google Scholar 

  • Mykytczuk NCS, Trevors JT, Leduc LG, Ferroni GD (2007) Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress. Prog Biophys Mol Bio 95(1–3):60–82

    Article  CAS  Google Scholar 

  • Nyyssölä A, Pihlajaniemi A, Palva A, Von Weymarn N, Leisola M (2005) Production of xylitol from d-xylose by recombinant Lactococcus lactis. J Biotechnol 118(1):55–66

    Article  PubMed  Google Scholar 

  • O'Sullivan E, Condon S (1997) Intracellular pH is a major factor in the induction of tolerance to acid and other stresses in Lactococcus lactis. Appl Environ Microbiol 63(11):4210–4215

    PubMed Central  PubMed  Google Scholar 

  • Parvez S, Malik KA, Kang SA, Kim HY (2006) Probiotics and their fermented food products are beneficial for health. J Appl Microbiol 100(6):1171–1185. doi:10.1111/j.1365-2672.2006.02963.x

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Majumder A, Goyal A (2012) Potentials of exopolysaccharides from lactic acid bacteria. Indian J Microbiol 52(1):3–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Portnoy VA, Bezdan D, Zengler K (2011) Adaptive laboratory evolution—harnessing the power of biology for metabolic engineering. Curr Opin Biotech 22:590–594

    Article  CAS  PubMed  Google Scholar 

  • Prasad SB, Ramachandran K, Jayaraman G (2012) Transcription analysis of hyaluronan biosynthesis genes in Streptococcus zooepidemicus and metabolically engineered Lactococcus lactis. Appl Microbiol Biotechnol 94(6):1593–1607

    Article  CAS  PubMed  Google Scholar 

  • Ryan S, Begley M, Gahan CGM, Hill C (2009) Molecular characterization of the arginine deiminase system in Listeria monocytogenes: regulation and role in acid tolerance. Environ Microbiol 11(2):432–445

    Article  CAS  PubMed  Google Scholar 

  • Sánchez B, Champomier-Vergès MC, Collado MC, Anglade P, Baraige F, Sanz Y, de los Reyes-Gavilan CG, Margolles A, Zagorec M (2007) Low-pH adaptation and the acid tolerance response of Bifidobacterium longum Biotype longum. Appl Environ Microbiol 73(20):6450–6459

    Article  PubMed Central  PubMed  Google Scholar 

  • Santiago B, MacGilvray M, Faustoferri RC, Quivey RG Jr (2012) The branched-chain amino acid aminotransferase encoded by ilvE is involved in acid tolerance in Streptococcus mutans. J Bacteriol 194:2010–2019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Santos F, Vera JL, van der Heijden R, Valdez G, de Vos WM, Sesma F, Hugenholtz J (2008) The complete coenzyme B12 biosynthesis gene cluster of Lactobacillus reuteri CRL1098. Microbiol 154(1):81–93

    Article  CAS  Google Scholar 

  • Senouci-Rezkallah K, Schmitt P, Jobin M (2011) Amino acids improve acid tolerance and internal pH maintenance in Bacillus cereus ATCC14579 strain. Food Microbiol 28:364–372

    Article  CAS  PubMed  Google Scholar 

  • Serrazanetti D, Guerzoni M, Corsetti A, Vogel R (2009) Metabolic impact and potential exploitation of the stress reactions in Lactobacilli. Food Microbiol 26:700–711

    Article  CAS  PubMed  Google Scholar 

  • Sheehan V, Sleator R, Hill C, Fitzgerald G (2007) Improving gastric transit, gastrointestinal persistence and therapeutic efficacy of the probiotic strain Bifidobacterium breve UCC2003. Microbiol 153(10):3563–3571

    Article  CAS  Google Scholar 

  • Song AAL, Abdullah JO, Abdullah MP, Shafee N, Rahim RA (2012) Functional expression of an orchid fragrance gene in Lactococcus lactis. Int J Mol Sci 13(2):1582–1597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song SH, Vieille C (2009) Recent advances in the biological production of mannitol. Appl Microbiol Biotechnol 84(1):55–62

    Article  CAS  PubMed  Google Scholar 

  • Sybesma W, Starrenburg M, Kleerebezem M, Mierau I, de Vos WM, Hugenholtz J (2003) Increased production of folate by metabolic engineering of Lactococcus lactis. Appl Environ Microbiol 69(6):3069–3076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka Y, Watanabe J, Mogi Y (2012) Monitoring of the microbial communities involved in the soy sauce manufacturing process by PCR-denaturing gradient gel electrophoresis. Food Microbiol 31(1):100–106

    Article  CAS  PubMed  Google Scholar 

  • Teusink B, Wiersma A, Jacobs L, Notebaart RA, Smid EJ (2009) Understanding the adaptive growth strategy of Lactobacillus plantarum by in silico optimisation. Plos Comput Biol 5(6):e1000410

    Article  PubMed Central  PubMed  Google Scholar 

  • Tian H, Tan J, Zhang L, Gu X, Xu W, Guo X, Luo Y (2012) Increase of stress resistance in Lactococcus lactis via a novel food-grade vector expressing a shsp gene from Streptococcus thermophilus. Braz J Microbiol 43(3):1157–1164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • To TMH, Grandvalet C, Tourdot-Maréchal R (2011) Cyclopropanation of membrane unsaturated fatty acids is not essential to the acid stress response of Lactococcus lactis subsp. cremoris. Appl Environ Microbiol 77(10):3327–3334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trip H, Mulder NL, Lolkema JS (2012) Improved acid stress survival of Lactococcus lactis expressing the histidine decarboxylation pathway of Streptococcus thermophilus CHCC1524. J Biol Chem 287:11195–11204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsuji A, Okada S, Hols P, Satoh E (2013) Metabolic engineering of Lactobacillus plantarum for succinic acid production through activation of the reductive branch of the tricarboxylic acid cycle. Enzyme Microbiol Technol 53:97–103

    Article  CAS  Google Scholar 

  • Vaidyanathan H, Kandasamy V, Ramakrishnan GG, Ramachandran K, Jayaraman G, Ramalingam S (2011) Glycerol conversion to 1, 3-Propanediol is enhanced by the expression of a heterologous alcohol dehydrogenase gene in Lactobacillus reuteri. AMB Express 1(1):1–8

    Article  Google Scholar 

  • Wang Y, Manow R, Finan C, Wang J, Garza E, Zhou S (2011) Adaptive evolution of nontransgenic Escherichia coli KC01 for improved ethanol tolerance and homoethanol fermentation from xylose. J Ind Microbiol Biot 38:1371–1377

    Article  CAS  Google Scholar 

  • Warnecke T, Gill RT (2005) Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microbiol Cell Fact 4(1):25–32

    Article  Google Scholar 

  • Wu C, Zhang J, Chen W, Wang M, Du G, Chen J (2012a) A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance. Appl Microbiol Biotechnol 93:707–722

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Zhang J, Du G, Chen J (2013a) Aspartate protects Lactobacillus casei against acid stress. Appl Microbiol Biotechnol 97:4083–4093

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Zhang J, Du G, Chen J (2013b) Heterologous expression of Lactobacillus casei RecO improved the multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 during salt stress. Bioresource Technol 143:238–241

    Article  CAS  Google Scholar 

  • Wu C, Zhang J, Wang M, Du G, Chen J (2012b) Lactobacillus casei combats acid stress by maintaining cell membrane functionality. J Ind Microbiol Biotechnol 39:1031–1039

    Article  CAS  PubMed  Google Scholar 

  • Wu R, Zhang W, Sun T, Wu J, Yue X, Meng H, Zhang H (2011) Proteomic analysis of responses of a new probiotic bacterium Lactobacillus casei Zhang to low acid stress. Int J Food Microbiol 147(3):181–187

    Article  CAS  PubMed  Google Scholar 

  • Xiong T, Guan Q, Song S, Hao M, Xie M (2012) Dynamic changes of lactic acid bacteria flora during Chinese sauerkraut fermentation. Food Control 26(1):178–181

    Article  CAS  Google Scholar 

  • Xu W, Huang Z, Zhang X, Li Q, Lu Z, Shi J, Xu Z, Ma Y (2011) Monitoring the microbial community during solid-state acetic acid fermentation of Zhenjiang aromatic vinegar. Food Microbiol 28(6):1175–1181

    Article  CAS  PubMed  Google Scholar 

  • Yan Y-z, Qian Y-l, Ji F-d, Chen J-y, Han B-z (2013) Microbial composition during Chinese soy sauce koji-making based on culture dependent and independent methods. Food Microbiol 34(1):189–195

    Article  CAS  PubMed  Google Scholar 

  • Ye W, Huo G, Chen J, Liu F, Yin J, Yang L, Ma X (2010) Heterologous expression of the Bacillus subtilis (natto) alanine dehydrogenase in Escherichia coli and Lactococcus lactis. Microbiol Res 165(4):268–275

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Du GC, Zhang Y, Liao XY, Wang M, Li Y, Chen J (2010a) Glutathione protects Lactobacillus sanfranciscensis against freeze–thawing, freeze-drying, and cold treatment. Appl Environ Microbiol 76(9):2989–2996

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Fu R-Y, Hugenholtz J, Li Y, Chen J (2007) Glutathione protects Lactococcus lactis against acid stress. Appl Environ Microbiol 73(16):5268–5275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Li Y, Chen W, Du GC, Chen J (2012a) Glutathione improves the cold resistance of Lactobacillus sanfranciscensis by physiological regulation. Food Microbiol 31(2):285–292

    Article  PubMed  Google Scholar 

  • Zhang J, Wu C, Du G, Chen J (2012b) Enhanced acid tolerance in Lactobacillus casei by adaptive evolution and compared stress response during acid stress. Biotechnol Bioproc E 17(2):283–289

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang Y, Zhu Y, Mao S, Li Y (2010b) Proteomic analyses to reveal the protective role of glutathione in resistance of Lactococcus lactis to osmotic stress. Appl Environ Microbiol 76(10):3177–3186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao B, Houry WA (2010) Acid stress response in enteropathogenic gammaproteobacteria: an aptitude for survival. Biochem Cell Biol 88(2):301–314

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Liang R, Zhang L, Wu C, Zhou R, Liao X (2013) Characterization of microbial communities in strong aromatic liquor fermentation pit muds of different ages assessed by combined DGGE and PLFA analyses. Food Res Int 54(1):660–666

    Article  CAS  Google Scholar 

  • Zhu L, Zhu Y, Zhang Y, Li Y (2012) Engineering the robustness of industrial microbes through synthetic biology. Trends Microbiol 20(2):94–101

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Zhang Y, Li Y (2009) Understanding the industrial application potential of lactic acid bacteria through genomics. Appl Microbiol Biotechnol 83(4):597–610

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (31171742, 31301546).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chongde Wu or Rongqing Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, C., Huang, J. & Zhou, R. Progress in engineering acid stress resistance of lactic acid bacteria. Appl Microbiol Biotechnol 98, 1055–1063 (2014). https://doi.org/10.1007/s00253-013-5435-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5435-3

Keywords

Navigation