Skip to main content
Log in

Effects of olive mill wastewater on soil carbon and nitrogen cycling

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This study investigated the cycling of C and N following application of olive mill wastewater (OMW) at various rates (0, 42, 84, and 168 m3/ha). OMW stimulated respiration rate throughout the study period, but an increase in soil organic matter was observed only at the highest rate. Soil phenol content decreased rapidly within 2 weeks following application but neither phenol oxidase and peroxidase activity nor laccase gene copies could explain this response. Soil NH4 +-N content increased in response to OMW application rate, while an opposite trend observed for NO3 -N, which attributed to immobilization. This decrease was in accordance with amoA gene copies of archaeal and bacterial ammonia oxidizers in the first days following OMW application. Afterwards, although amoA gene copies and potential nitrification rates recovered to values similar to or higher than those in the non-treated soils, NO3 -N content did not change among the treatments. A corresponding increase in denitrifying gene copies (nirK, nirS, nosZ) during that period indicates that denitrification, stimulated by OMW application rate, was responsible for this effect; a hypothesis consistent with the decrease in total Kjeldahl nitrogen content late in the season. The findings suggest that land application of OMW is a promising practice for OMW management, even at rates approaching the soil water holding capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bodini SF, Cicalini AR, Santori F (2011) Rhizosphere dynamics during phytoremediation of olive mill wastewater. Bioresour Technol 102:4383–4389

    Article  CAS  PubMed  Google Scholar 

  • Bouyoucos GJ (1962) Hydrometer method improved for making particle and size analysis of soils. Agron J 54:464–465

    Article  Google Scholar 

  • Busby RR, Allen Torbert H, Gebhart DL (2007) Carbon and nitrogen mineralization of non-composted and composted municipal solid waste in sandy soils. nirS, nirK and nosZ genes for community surveys of denitrifying bacteria. Soil Biol Biochem 39:1277–1283

    Article  CAS  Google Scholar 

  • Cabrera F, López R, Martinez-Bordiú A, De Dupuy LE, Murillo JM (1996) Land treatment of olive oil mill wastewater. Int Biodeter Biodegrad 38:215–225

    Article  Google Scholar 

  • Casa R, D’Annibale A, Pieruccetti F, Stazi SR, Giovannozzi Sermanni G, Lo Cascio B (2003) Reduction of the phenolic components in olive-mill wastewater by an enzymatic treatment and its impact on durum wheat (Triticum durum Desf.) germinability. Chemosphere 50:959–966

    Article  CAS  PubMed  Google Scholar 

  • Di Serio MG, Lanza B, Mucciarella MR, Russi F, Iannucci E, Marfisi P, Madeo A (2008) Effects of olive mill wastewater spreading on the physico-chemical and microbiological characteristics of soil. Int Biodeter Biodegrad 62:403–407

    Article  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102:14683–14688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Henry S, Baudoin E, López-Gutiérrez JC, Martin-Laurent F, Brauman A, Philippot L (2004) Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J Microbiol Meth 59:327–335

    Article  CAS  Google Scholar 

  • Henry S, Bru D, Stres B, Hallet S, Philippot L (2006) Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microbiol 72:5181–5189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang C-C, Chen Z-S (2009) Carbon and nitrogen mineralization of sewage sludge compost in soils with a different initial pH. Soil Sci Plant Nutr 55:715–724

    Article  CAS  Google Scholar 

  • Ishikawa K, Ohmori T, Miyamoto H, Ito T, Kumagai Y, Sonoda M, Matsumoto J, Miyamoto H, Kodama H (2013) Denitrification in soil amended with thermophile-fermented compost suppresses nitrate accumulation in plants. Appl Microbiol Biotechnol 97:1349–1359

    Article  CAS  PubMed  Google Scholar 

  • Kandeler E, Gerber H (1988) Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fertil Soils 6:68–72

    CAS  Google Scholar 

  • Kapellakis IE, Paranychianakis NV, Tsagarakis KP, Angelakis AN (2012) Treatment of olive mill wastewater with constructed wetlands. Water 4:260–271

    Article  CAS  Google Scholar 

  • Karpouzas DG, Rousidou C, Papadopoulou KK, Bekris F, Zervakis GI, Singh BK, Ehaliotis C (2009) Effect of continuous olive mill wastewater applications, in the presence and absence of nitrogen fertilization, on the structure of rhizosphere-soil fungal communities. FEMS Microbiol Ecol 70:388–401

    Article  CAS  PubMed  Google Scholar 

  • Karpouzas DG, Ntougias S, Iskidou E, Rousidou C, Papadopoulou KK, Zervakis GI, Ehaliotis C (2010) Olive mill wastewater affects the structure of soil bacterial communities. Appl Soil Ecol 45:101–111

    Article  Google Scholar 

  • Khalil MI, Hossain MB, Schmidhalter U (2005) Carbon and nitrogen mineralization in different upland soils of the subtropics treated with organic materials. Soil Biol Biochem 37:1507–1518

    Article  CAS  Google Scholar 

  • Ladd JN, Butler JHA (1972) Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol Biochem 4:19–30

    Article  CAS  Google Scholar 

  • Lauber CL, Sinsabaugh RL, Zak DR (2009) Laccase gene composition and relative abundance in oak forest soil is not affected by short-term nitrogen fertilization. Microb Ecol 57:50–57

    Article  CAS  PubMed  Google Scholar 

  • Levicnik-Hofferle S, Nicol GW, Ausec L, Mandic-Mulec I, Prosser JI (2012) Stimulation of thaumarchaeal ammonia oxidation by ammonia derived from organic nitrogen but not added inorganic nitrogen. FEMS Microbiol Ecol 80:114–123

    Article  CAS  PubMed  Google Scholar 

  • Li X, Han S, Guo Z, Shao D, Xin L (2010) Changes in soil microbial biomass carbon and enzyme activities under elevated CO2 affect fine root decomposition processes in a Mongolian oak ecosystem. Soil Biol Biochem 42:1101–1107

    Article  CAS  Google Scholar 

  • Mahmoud M, Janssen M, Haboub N, Nassour A, Lennartz B (2010) The impact of olive mill wastewater application on flow and transport properties in soils. Soil Till Res 107:36–41

    Article  Google Scholar 

  • Mantzavinos D, Kalogerakis N (2005) Treatment of olive mill effluents: Part I. Organic matter degradation by chemical and biological processes—an overview. Environ Int 31:289–295

    Article  CAS  PubMed  Google Scholar 

  • Mekki A, Dhouib A, Sayadi S (2006) Changes in microbial and soil properties following amendment with treated and untreated olive mill wastewater. Microbiol Res 161:93–101

    Article  PubMed  Google Scholar 

  • Montemurro F, Mariangela D, Vitti C, Ferri D (2011) Potential use of olive mill wastewater as amendment: crops yield and soil properties assessment. Commun Soil Sci Plant Anal 42:2594–2603

    Article  CAS  Google Scholar 

  • Niaounakis M, Halvadakis CP (2006) Olive processing waste management, volume 5, (2nd edn) Literature Review and Patent Survey, Elsevier, Oxford. ISBN: 9780080448510, p 514

  • Ntougias S, Baldrian P, Ehaliotis C, Nerud F, Antoniou T, Merhautová V, Zervakis GI (2012) Biodegradation and detoxification of olive mill wastewater by selected strains of the mushroom genera Ganoderma and Pleurotus. Chemosphere 88:620–626

    Article  CAS  PubMed  Google Scholar 

  • Paranychianakis NV, Tsiknia M, Giannakis G, Nikolaidis NP, Kalogerakis N (2013) Nitrogen cycling and relationships between ammonia oxidizers and denitrifiers in a clay–loam soil. Appl Microbiol Biotechnol 97:5507–5515

    Article  CAS  PubMed  Google Scholar 

  • Parham JA, Deng SP (2000) Detection, quantification and characterization of β-glucosaminidase activity in soil. Soil Biol Biochem 32:1183–1190

    Article  CAS  Google Scholar 

  • Petersen DG, Blazewicz SJ, Firestone M, Herman DJ, Turetsky M, Waldrop M (2012) Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environ Microbiol 14:993–1008

    Article  CAS  PubMed  Google Scholar 

  • Piotrowska A, Iamarino G, Rao MA, Gianfreda L (2006) Short-term effects of olive mill waste water (OMW) on chemical and biochemical properties of a semiarid Mediterranean soil. Soil Biol Biochem 38:600–610

    Article  CAS  Google Scholar 

  • Piotrowska A, Rao MA, Scotti R, Gianfreda L (2011) Changes in soil chemical and biochemical properties following amendment with crude and dephenolized olive mill waste water (OMW). Geoderma 161:8–17

    Article  CAS  Google Scholar 

  • Prosser JI (2011) Soil nitrifiers and nitrification. In: Ward et al. (eds) Nitrification. ASM, Washington, DC, pp. 347–381

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saadi I, Laor Y, Raviv M, Medina S (2007) Land spreading of olive mill wastewater: effects on soil microbial activity and potential phytotoxicity. Chemosphere 66:75–83

    Article  CAS  PubMed  Google Scholar 

  • Schimel J, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Front Microbiol 3:348

    Google Scholar 

  • Sierra J, Martí E, Garau MA, Cruañas R (2007) Effects of the agronomic use of olive oil mill wastewater: field experiment. Sci Total Environ 378:90–94

    Article  CAS  PubMed  Google Scholar 

  • Sinsabaugh RL (2010) Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem 42:391–404

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Saiya-Cork K, Long T, Osgood MP, Neher DA, Zak DR, Norby RJ (2003) Soil microbial activity in a Liquidambar plantation unresponsive to CO2-driven increases in primary production. Appl Soil Ecol 24:263–271

    Article  Google Scholar 

  • Smolders E, Brans K, Coppens F, Merckx R (2001) Potential nitrification rate as a tool for screening toxicity in metal-contaminated soils. Environl Toxicol Chem 20:2469–2474

    Article  CAS  Google Scholar 

  • Stopnisek N, Gubry-Rangin C, Hofferle S, Nicol GW, Mandic-Mulec I, Prosser JI (2010) Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced by ammonium amendment. Appl Environ Microbiol 76:7626–7634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Theuerl S, Buscot F (2010) Laccases: toward disentangling their diversity and functions in relation to soil organic matter cycling. Biol Fert Soils 46:215–225

    Article  CAS  Google Scholar 

  • Throbäck IN, Enwall K, Jarvis Å, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49:401–417

    Article  PubMed  Google Scholar 

  • Yamamoto N, Asano R, Yoshii H, Otawa K, Nakai Y (2011) Archaeal community dynamics and detection of ammonia-oxidizing archaea during composting of cattle manure using culture-independent DNA analysis. Appl Microbiol Biotechnol 90:1501–1510

    Article  CAS  PubMed  Google Scholar 

  • Zibilske LM (1994) Carbon mineralization. In: Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S (eds) Methods of soil analysis: microbiological and biochemical properties. Soil Science Society of America, Madison, pp 835–859

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos V. Paranychianakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsiknia, M., Tzanakakis, V.A., Oikonomidis, D. et al. Effects of olive mill wastewater on soil carbon and nitrogen cycling. Appl Microbiol Biotechnol 98, 2739–2749 (2014). https://doi.org/10.1007/s00253-013-5272-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5272-4

Keywords

Navigation