Skip to main content
Log in

The effects of Bacillus thuringiensis Cry6A on the survival, growth, reproduction, locomotion, and behavioral response of Caenorhabditis elegans

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Several families of crystal proteins from Bacillus thuringiensis exhibit nematicidal activity. Cry5B protein, a pore-forming toxin, has been intensively studied yielding many insights into the mode of action of crystal protein at molecular level and pathogenesis of pore-forming toxins. However, little attention was paid to Cry6A, another representative nematicidal crystal protein. Cry6A shares very low homology with Cry5B at amino acid sequence and probably acts in a distinct pathway from Cry5B and even the other main commercial crystal proteins. In the current study, we comprehensively investigated the nematicidal properties of Cry6Aa2 against the free-living soil nematode Caenorhabditis elegans and examined the physical response of C. elegans to Cry6Aa2 attack. Our results indicate that Cry6Aa2 exhibits high lethal activity to C. elegans and could cause detrimental effects on C. elegans, including obviously suppressed growth, decreased brood size, and even abnormal motility. Meanwhile, our study additionally shows that C. elegans could defend against the Cry6Aa2 toxin harmful threat through behavioral defense responses, such as reduced oral uptake and physical avoidance. In general, this study suggests that Cry6Aa2 possesses diverse nematicidal properties, which strongly indicates that Cry6Aa2 is a promising potential candidate of nematicidal agent. Moreover, this study highlights the importance of behavioral responses in defense of C. elegans for survival and demonstrates the key role of crystal protein in the interaction of B. thuringiensisC. elegans. These findings could shed light on understanding the interaction of C. elegans with B. thuringiensis and provide a perfect model to study the role of pathogenic factor in the interaction of pathogen–host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Able DJ (1996) The contagion indicator hypothesis for parasite-mediated sexual selection. Proc Natl Acad Sci U S A 93:2229–2233

    Article  PubMed  CAS  Google Scholar 

  • Aroian R, van der Goot FG (2007) Pore-forming toxins and cellular non-immune defenses (CNIDs). Curr Opin Microbiol 10:57–61

    Article  PubMed  CAS  Google Scholar 

  • Bird DM, Williamson VM, Abad P, McCarter J, Danchin EG, Castagnone-Sereno P, Opperman CH (2009) The genome of root-knot nematodes. Annu Rev Phytopathol 47:333–351

    Article  PubMed  CAS  Google Scholar 

  • Bischof LJ, Huffman DL, Aroian RV (2006) Assays for toxicity studies in C. elegans with Bt crystal proteins. In: Strange K (ed) C. elegans methods and application (1st edn). Humana, Totowa, pp 139–154

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bravo A, Likitvivatanavong S, Gill SS, Soberón M (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41:423–431

    Article  PubMed  CAS  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed  CAS  Google Scholar 

  • de Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17:193–199

    Article  PubMed  Google Scholar 

  • Gregory WF, Parkinson J (2003) Caenorhabditis elegans—application to nematode genomics. Comp Funct Genom 4:194–202

    Article  CAS  Google Scholar 

  • Griffitts JS, Whitacre JL, Stevens DE, Aroian RV (2001) Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme. Science 293:860–864

    Article  PubMed  CAS  Google Scholar 

  • Griffitts JS, Haslam SM, Yang T, Garczynski SF, Dell A, Adang MJ, Aroian RV (2005) Glycolipids as receptor for Bacillus thruingiensis crystal toxin. Science 307:922–925

    Article  PubMed  CAS  Google Scholar 

  • Guo SX, Liu M, Peng DH, Ji SS, Wang PX, Yu ZN, Sun M (2008) New strategy for isolating novel nematicidal crystal protein genes from Bacillus thuringiensis strain YBT-518. Appl Environ Microbiol 74:6997–7001

    Article  PubMed  CAS  Google Scholar 

  • Hasshoff M, Böhnisch C, Tonn D, Hasert B, Schulenburg H (2007) The role of Caenorhabditis elegans insulin-like signaling in the behavioral avoidance of pathogenic Bacillus thuringiensis. FASEB J 21:1801–1812

    Article  PubMed  CAS  Google Scholar 

  • Huffman DL, Abrami L, Sasik R, Corbeil J, van der Goot FG, Aroian RV (2004) Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proc Natl Acad Sci U S A 101:10995–11000

    Article  PubMed  CAS  Google Scholar 

  • Hui F, Scheib U, Hu Y, Sommer RJ, Aroian RV, Ghosh P (2012) Structure and glycolipid binding properties of the nematicidal protein Cry5B. Biochemistry 51:9911–9921

    Article  PubMed  CAS  Google Scholar 

  • Irazoqui JE, Troemel ER, Feinbaoum RL, Luhachack LG, Cezairliyan BO, Ausubel FM (2010) Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus. Plos Pathog 6:e1000982

    Article  PubMed  Google Scholar 

  • Kavaliers M, Choleris E, Pfaff DW (2005) Genes, odours and the recognition of parasitized individuals by rodents. Trends Parasitol 21:423–429

    Article  PubMed  CAS  Google Scholar 

  • Kho MF, Bellier A, Balasubramani V, Hu Y, Hsu W, Nielsen-LeRoux C, McGillivray SM, Nizet V, Aroian RV (2011) The pore-forming protein Cry5B elicits the pathogenicity of Bacillus sp. against Caenorhabditis elegans. Plos One 6:e29122

    Article  PubMed  CAS  Google Scholar 

  • Li XQ, Wei JZ, Tan A, Aroian RV (2007) Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnol J 5:455–464

    Article  PubMed  CAS  Google Scholar 

  • Marroquin LD, Elyassnia D, Griffitts JS, Feitelson JS, Aroian RV (2000) Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics 156:1693–1699

    Google Scholar 

  • Moore J (2002) Parasites and the behavior of animals. Oxford University Press, Oxford

    Google Scholar 

  • Pujol N, Link EM, Liu LX, Kurz CL, Alloing G, Tan MW, Ray P, Solari R, Johnson CD, Ewbank JJ (2001) A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr Biol 11:809–821

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    PubMed  CAS  Google Scholar 

  • Schulenburg H, Müller S (2004) Natural variation in the response of Caenorhabditis elegans towards Bacillus thuringiensis. Parasitology 128:433–443

    Article  PubMed  CAS  Google Scholar 

  • Schulenburg H, Kurz CL, Ewbank JJ (2004) Evolution of the innate immune system: the worm perspective. Immunol Rev 198:36–58

    Article  PubMed  CAS  Google Scholar 

  • Schulte RD, Makus C, Hasert B, Michiels NK, Schulenburg H (2010) Multiple reciprocal adaptations and rapid genetic change upon experimental coevolution of an animal host and its microbial parasite. Proc Natl Acad Sci U S A 107:7359–7364

    Article  PubMed  CAS  Google Scholar 

  • Schulte RD, Hasert B, Makus C, Michiels NK, Schulenburg H (2011a) Increased responsiveness in feeding behaviour of Caenorhabditis elegans after experimental coevolution with its microparasite Bacillus thuringiensis. Biol Lett. doi:10.1098/rsbl.2011.0684

    PubMed  Google Scholar 

  • Schulte RD, Makus C, Hasert B, Michiels NK, Schulenburg H (2011b) Host–parasite local adaptation after experimental coevolutio of Caenorhabditis elegans and its micoparasite Bacillus thuringiensis. Proc R Soc 278:2832–2839

    Article  Google Scholar 

  • Sicard M, Hering S, Schulte R, Gaudriault S, Schulenburg H (2007) The effect of Photorhabdus luminescens (Enterobacteriaceae) on the survival, development, reproduction and behaviour of Caenorhabditis elegans (Nematoda: Rhabditidae). Environ Microbiol 9:12–25

    Article  PubMed  CAS  Google Scholar 

  • Smith MP, Laws TR, Atkins TP, Oyston PCF, de Pomerai DI, Titball RW (2002) A liquid-based method for the assessment of bacterial pathogenicity using the nematode Caenorhabditis elegans. FEMS Microbiol Lett 210:181–185

    Article  PubMed  CAS  Google Scholar 

  • Tavernarakis N, Shreffler W, Wang S, Driscoll M (1997) Unc-8, a DEG/ENaC family member, encodes a subunit of a candidate mechanically gated channel that modulates C. elegans locomotion. Neuron 18:107–119

    Article  PubMed  CAS  Google Scholar 

  • Trudgill DL, Blok VC (2001) Apomictic, polyphagous root-knot nematode: exceptionally successful and damaging biotrophic root pathogens. Annu Rev Phytopathol 39:53–77

    Article  PubMed  CAS  Google Scholar 

  • Wei JZ, Hale K, Carta L, Platzer E, Wong C, Fang SC, Aroian RV (2003) Bacillus thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci U S A 100:2760–2765

    Article  PubMed  CAS  Google Scholar 

  • White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314:1–340

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, Bai P, Ye W, Zhang F, Ruan L, Sun M (2008) A novel negative regulatory factor for nematicidal Cry protein gene expression in Bacillus thuringiensis. J Microbiol Biotechnol 18:1033–1039

    PubMed  CAS  Google Scholar 

  • Zhang Y, Lu H, Bargman CI (2005) Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature 438:179–184

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Ming Sun (Stake Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China) for providing cry6Aa2 gene, and the C. elegans Genetic Center which is supported by the NIH Center for Research Resource for providing N2 worms for use in this study. This study was supported by the National Basic Research Program (973) of China (2013CB127504); the National High Technology Research and Development Program (863) of China (2011AA10A203); the Natural Science Foundation of Hunan Province, China (10JJ6055); Scientific Research Fund of Hunan Provincial Education Department, China (09K023); Specialized Research Fund for the Doctoral Program of Higher Education of China (20114306120006); and the Industrialization Research Fund of Hunan Provincial Education Department, China (11CY024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziquan Yu.

Additional information

Hui Luo and Jing Xiong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, H., Xiong, J., Zhou, Q. et al. The effects of Bacillus thuringiensis Cry6A on the survival, growth, reproduction, locomotion, and behavioral response of Caenorhabditis elegans . Appl Microbiol Biotechnol 97, 10135–10142 (2013). https://doi.org/10.1007/s00253-013-5249-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5249-3

Keywords

Navigation