Skip to main content
Log in

Trp358 is a key residue for the multiple catalytic activities of multifunctional amylase OPMA-N from Bacillus sp. ZW2531-1

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The oligosaccharide-producing multifunctional amylase-N (OPMA-N) is a novel multifunctional amylase and exhibits both hydrolytic and transglycosyl activities, but the molecular mechanism for its multiple catalytic activities is still unknown. Our research investigates the possible catalytic roles of a Trp residue in OPMA-N (Trp358) which is not only near the catalytic site Glu356 but also highly conserved in glycoside hydrolase subfamily 20 (the neopullulanase subfamily). Site-directed mutageneses at this site reveal that the size and charge of the occupying amino acid directly affect substrate binding, orientation of other crucial catalytic residues, the catalytic specificity, the oligomer formation, as well as the thermal stability of the enzyme. These findings may be useful in elucidating the different mechanisms of the multiple catalytic activities of multifunctional amylase OPMA-N and hence for developing an improved multifunctional amylase for the preparation of isomaltooligosaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Accelrys Inc (1999) Homology user guide. Accelrys, San Diego, CA, USA

  • Ben Mabrouk S, Aghajari N, Ben Ali M, Ben Messaoud E, Juy M, Haser R, Bejar S (2011) Enhancement of the thermostability of the maltogenic amylase MAUS149 by Gly312Ala and Lys436Arg substitutions. Biores Technol 102(2):1740–1746

    Article  CAS  Google Scholar 

  • Bhabha G, Lee J, Ekiert DC, Gam J, Wilson IA, Dyson HJ, Benkovic SJ, Wright PE (2011) A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis. Science 332(6026):234–238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gumber S, Taylor DL, Whittington RJ (2007) Protein extraction from Mycobacterium avium subsp. paratuberculosis: comparison of methods for analysis by sodium dodecyl sulphate polyacrylamide gel electrophoresis, native PAGE and surface enhanced laser desorption/ionization time of flight mass spectrometry. J Microbiol Methods 68(1):115–127

    Article  CAS  PubMed  Google Scholar 

  • Han WW, Li ZS, Zheng QC, Sun CC (2006) Homology modeling and molecular dynamics studies on the tomato methyl jasmonate esterase. Polymer 47(4):1436–1442

    Article  CAS  Google Scholar 

  • Han WW, Wang Y, Zhou YH, Yao Y, Li ZS, Feng Y (2009) Understanding structural/functional properties of amidase from Rhodococcus erythropolis by computational approaches. J Mol Model 15(5):481–487

    Article  CAS  PubMed  Google Scholar 

  • Han R, Liu L, Shin HD, Chen RR, Du G, Chen J (2012) Site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase from Paenibacillus macerans to enhance substrate specificity towards maltodextrin for enzymatic synthesis of 2-O-d-glucopyranosyl-l-ascorbic acid (AA-2G). Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4514-1

    Google Scholar 

  • Hondoh H, Kuriki T, Matsuura Y (2003) Three-dimensional structure and substrate binding of Bacillus stearothermophilus neopullulanase. J Mol Biol 326(1):177–188

    Article  CAS  PubMed  Google Scholar 

  • Hondoh H, Saburi W, Mori H, Okuyama M, Nakada T, Matsuura Y, Kimura A (2008) Substrate recognition mechanism of α-1,6-glucosidic linkage hydrolyzing enzyme, dextran glucosidase from Streptococcus mutans. J Mol Biol 378(4):913–922

    Article  PubMed  Google Scholar 

  • Horinouchi S, Fukusumi S, Ohshima T, Beppu T (1988) Cloning and expression in Escherichia coli of two additional amylase genes of a strictly anaerobic thermophile, Dictyoglomus thermophilum, and their nucleotide sequences with extremely low guanine-plus-cytosine contents. Eur J Biochem 176(2):243–253

    Article  CAS  PubMed  Google Scholar 

  • Huey R, Morris GM, Olson AJ, Goodsell DS (2007) A semiempirical free energy force field with charge-based desolvation. J Comput Chem 28(6):1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Ito S, Ishino K, Shimizu-Ibuka A, Sakai H (2007) Val326 of Thermoactinomyces vulgaris R-47 amylase II modulates the preference for α-(1,4)- and α-(1,6)-glycosidic linkages. Biochim Biophys Acta 1774(4):443–449

    Article  CAS  PubMed  Google Scholar 

  • Jung TY, Li D, Park JT, Yoon SM, Tran PL, Oh BH, Janecek S, Park SG, Woo EJ, Park KH (2012) Association of novel domain in active site of archaic hyperthermophilic maltogenic amylase from Staphylothermus marinus. J Biol Chem 287(11):7979–7989

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Cha SS, Kim HJ, Kim TJ, Ha NC, Oh ST, Cho HS, Cho MJ, Kim MJ, Lee HS, Kim JW, Choi KY, Park KH, Oh BH (1999) Crystal structure of a maltogenic amylase provides insights into a catalytic versatility. J Biol Chem 274(37):26279–26286

    Article  CAS  PubMed  Google Scholar 

  • Kosugi T, Hayashi S (2012) Crucial role of protein flexibility in formation of a stable reaction transition state in an α-amylase catalysis. J Am Chem Soc 134(16):7045–7055

    Article  CAS  PubMed  Google Scholar 

  • Kumar V (2010) Analysis of the key active subsites of glycoside hydrolase 13 family members. Carbohydr Res 345(7):893–898

    Article  CAS  PubMed  Google Scholar 

  • Laskowski MWMRA, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  • Lee HS, Kim JS, Shim K, Kim JW, Inouye K, Oneda H, Kim YW, Cheong KA, Cha H, Woo EJ, Auh JH, Lee SJ, Park KH (2006) Dissociation/association properties of a dodecameric cyclomaltodextrinase. Effects of pH and salt concentration on the oligomeric state. FEBS J 273(1):109–121

    Article  CAS  PubMed  Google Scholar 

  • Li F, Zhu X, Li Y, Cao H, Zhang Y (2011) Functional characterization of a special thermophilic multifunctional amylase OPMA-N and its N-terminal domain. Acta Biochim Biophys Sin (Shanghai) 43(4):324–334

    Article  CAS  Google Scholar 

  • Liu YH, Lu FP, Li Y, Wang JL, Gao C (2008) Acid stabilization of Bacillus licheniformis α-amylase through introduction of mutations. Appl Microbiol Biotechnol 80(5):795–803

    Article  CAS  PubMed  Google Scholar 

  • Majzlová K, Pukajová Z, Janeček S (2013) Tracing the evolution of the α-amylase subfamily GH13_36 covering the amylolytic enzymes intermediate between oligo-1,6-glucosidases and neopullulanases. Carbohydr Res 367:48–57

    Article  PubMed  Google Scholar 

  • Matsuura Y, Kusunoki M, Harada W, Kakudo M (1984) Structure and possible catalytic residues of Taka-amylase A. J Biochem 95(3):697–702

    CAS  PubMed  Google Scholar 

  • Mizuno M, Tonozuka T, Uechi A, Ohtaki A, Ichikawa K, Kamitori S, Nishikawa A, Sakano Y (2004) The crystal structure of Thermoactinomyces vulgaris R-47 α-amylase II (TVA II) complexed with transglycosylated product. Eur J Biochem 271(12):2530–2538

    Article  CAS  PubMed  Google Scholar 

  • Møller MS, Fredslund F, Majumder A, Nakai H, Poulsen JC, Lo Leggio L, Svensson B, Abou Hachem M (2012) Enzymology and structure of the GH13_31 glucan 1,6-α-glucosidase that confers isomaltooligosaccharide utilization in the probiotic Lactobacillus acidophilus NCFM. J Bacteriol 194(16):4249–4259

    Article  PubMed Central  PubMed  Google Scholar 

  • Motyan JA, Gyemant G, Harangi J, Bagossi P (2011) Computer-aided subsite mapping of α-amylases. Carbohydr Res 346(3):410–415

    Article  CAS  PubMed  Google Scholar 

  • Ohtaki A, Mizuno M, Tonozuka T, Sakano Y, Kamitori S (2004) Complex structures of Thermoactinomyces vulgaris R-47 α-amylase 2 with acarbose and cyclodextrins demonstrate the multiple substrate recognition mechanism. J Biol Chem 279(30):31033–31040

    Article  CAS  PubMed  Google Scholar 

  • Oslancova A, Janecek S (2002) Oligo-1,6-glucosidase and neopullulanase enzyme subfamilies from the α-amylase family defined by the fifth conserved sequence region. Cell Mol Life Sci 59(11):1945–1959

    Article  CAS  PubMed  Google Scholar 

  • Park KH, Kim TJ, Cheong TK, Kim JW, Oh BH, Svensson B (2000) Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the α-amylase family. Biochim Biophys Acta 1478(2):165–185

    Article  CAS  PubMed  Google Scholar 

  • Saam J, Ivanov I, Walther M, Holzhütter HG, Kuhn H (2007) Molecular dioxygen enters the active site of 12/15-lipoxygenase via dynamic oxygen access channels. Proc Natl Acad Sci U S A 104(33):13319–13324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stam MR, Danchin EG, Rancurel C, Coutinho PM, Henrissat B (2006) Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng Des Sel 19(12):555–562

    Article  CAS  PubMed  Google Scholar 

  • Sundy JS, Baraf HS, Yood RA, Edwards NL, Gutierrez-Urena SR, Treadwell EL, Vazquez-Mellado J, White WB, Lipsky PE, Horowitz Z, Huang W, Maroli AN, Waltrop RW 2nd, Hamburger SA, Becker MA (2011) Efficacy and tolerability of pegloticase for the treatment of chronic gout in patients refractory to conventional treatment: two randomized controlled trials. JAMA 306(7):711–720

    Article  CAS  PubMed  Google Scholar 

  • Wallnoefer HG, Lingott T, Gutierrez JM, Merfort I, Liedl KR (2010) Backbone flexibility controls the activity and specificity of a protein-protein interface: specificity in snake venom metalloproteases. J Am Chem Soc 132(30):10330–10337

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li F, Gao C, Zhang Y (2009a) Characterization of a novel mesophilic bacterial amylase secreted by ZW2531-1, a strain newly isolated from soil. Chem Res Chin Univ 25(4):198–202

    Google Scholar 

  • Wang Y, Li F, Zhang Y (2009b) New members of α-amylase family-multifunctional amylases. Chin J Biochem Mol Biol 25(10):104–109

    Google Scholar 

  • Wang Y, Li F, Zhang Y (2010) Preliminary investigation on the action modes of an oligosaccharide-producing multifunctional amylase. Appl Biochem Biotechnol 160(7):1955–1966

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (nos. 30870518 and 31170759).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingjiu Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 0.97 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, H., Gao, G., Gu, Y. et al. Trp358 is a key residue for the multiple catalytic activities of multifunctional amylase OPMA-N from Bacillus sp. ZW2531-1. Appl Microbiol Biotechnol 98, 2101–2111 (2014). https://doi.org/10.1007/s00253-013-5085-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5085-5

Keywords

Navigation