Skip to main content
Log in

The biotechnological use and potential of plant pathogenic smut fungi

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Plant pathogens of the family Ustilaginaceae parasitise mainly on grasses and cause smut disease. Among the best characterised members of this family are the covered smut fungus Ustilago hordei colonising barley and oat as well as the head smut Sporisorium reilianum and the corn smut Ustilago maydis, both infecting maize. Over the past years, U. maydis in particular has matured into a model system for diverse topics like plant–pathogen interaction, cellular transport processes or DNA repair. Consequently, a broad set of genetic, molecular and system biological methods has been established. This set currently serves as a strong foundation to improve existing and establish novel biotechnological applications. Here, we review four promising aspects covering different fields of applied science: (1) synthesis of secondary metabolites produced at fermenter level. (2) Lipases and other hydrolytic enzymes with potential roles in biocatalytic processes. (3) Degradation of ligno-cellulosic plant materials for biomass conversion. (4) Protein expression based on unconventional secretion, a novel approach inspired by basic research on mRNA transport. Thus, plant pathogenic Ustilaginaceae offer a great potential for future biotechnological applications by combining basic research and applied science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arutchelvi JI, Bhaduri S, Uppara PV, Doble M (2008) Mannosylerythritol lipids: a review. J Ind Microbiol Biotechnol 35:1559–1570. doi:10.1007/s10295-008-0460-4

    Article  CAS  Google Scholar 

  • Bakkeren G, Kronstad JW (1993) Conservation of the b mating-type gene complex among bipolar and tetrapolar smut fungi. Plant Cell 5:123–136. doi:10.1105/tpc.5.1.123

    CAS  Google Scholar 

  • Banuett F (1992) Ustilago maydis, the delightful blight. Trends Genet 8:174–180

    CAS  Google Scholar 

  • Basse CW, Steinberg G (2004) Ustilago maydis, model system for analysis of the molecular basis of fungal pathogenicity. Mol Plant Pathol 5:83–92. doi:10.1111/j.1364-3703.2004.00210.x

    Article  Google Scholar 

  • Bauer R, Begerow D, Oberwinkler F, Piepenbring M, Berbee ML (2001) Ustilaginomycetes. In: McLaughlin DJ, McLaughlin EG, Lemker PA (eds) The mycota VII. Systematics and evolution, part B. Springer, Berlin, pp 57–83

    Chapter  Google Scholar 

  • Baumann S, Pohlmann T, Jungbluth M, Brachmann A, Feldbrügge M (2012) Kinesin-3 and dynein mediate microtubule-dependent co-transport of mRNPs and endosomes. J Cell Sci 125:2740–2752. doi:10.1242/jcs.101212

    Article  CAS  Google Scholar 

  • Becht P, Vollmeister E, Feldbrügge M (2005) Role for RNA-binding proteins implicated in pathogenic development of Ustilago maydis. Eukaryot Cell 4:121–133. doi:10.1128/EC.4.1.121-133.2005

    Article  CAS  Google Scholar 

  • Becht P, König J, Feldbrügge M (2006) The RNA-binding protein Rrm4 is essential for polarity in Ustilago maydis and shuttles along microtubules. J Cell Sci 119:4964–4973. doi:10.1242/jcs.03287

    Article  CAS  Google Scholar 

  • Begerow D, Bauer R, Boekhout T (2000) Phylogenetic placements of ustilaginomycetous anamorphs as deduced from nuclear LSU rDNA sequences. Mycol Res 104:53–60

    Article  CAS  Google Scholar 

  • Begerow D, Stoll M, Bauer R (2006) A phylogenetic hypothesis of Ustilaginomycotina based on multiple gene analyses and morphological data. Mycologia 98:906–916

    Article  Google Scholar 

  • Bergmann S, Schürmann J, Scherlach K, Lange C, Brakhage AA, Hertweck C (2007) Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3:213–217

    Article  CAS  Google Scholar 

  • Böhmer M, Colby T, Böhmer C, Bräutigam A, Schmidt J, Bölker M (2007) Proteomic analysis of dimorphic transition in the phytopathogenic fungus Ustilago maydis. Proteomics 7:675–685. doi:10.1002/pmic.200600900

    Article  CAS  Google Scholar 

  • Bölker M (2001) Ustilago maydis—a valuable model system for the study of fungal dimorphism and virulence. Microbiology 147:1395–1401

    Google Scholar 

  • Bölker M, Basse CW, Schirawski J (2008) Ustilago maydis secondary metabolism-from genomics to biochemistry. Fungal Genet Biol 45:S88–93. doi:10.1016/j.fgb.2008.05.007

    Article  CAS  Google Scholar 

  • Bornscheuer UT, Kazlauskas RJ (1999) Hydrolases in organic synthesis: region- and stereoselective biotransformations, 2nd edn. Wiley, Weinheim

    Google Scholar 

  • Brachmann A, Weinzierl G, Kämper J, Kahmann R (2001) Identification of genes in the bW/bE regulatory cascade in Ustilago maydis. Mol Microbiol 42:1047–1063

    Article  CAS  Google Scholar 

  • Brachmann A, König J, Julius C, Feldbrügge M (2004) A reverse genetic approach for generating gene replacement mutants in Ustilago maydis. Mol Genet Genom 272:216–226. doi:10.1007/s00438-004-1047-z

    Article  CAS  Google Scholar 

  • Brefort T, Doehlemann G, Mendoza-Mendoza A, Reissmann S, Djamei A, Kahmann R (2009) Ustilago maydis as a pathogen. Annu Rev Phytopathol 47:423–445. doi:10.1146/annurev-phyto-080508-081923

    Article  CAS  Google Scholar 

  • Brundiek H, Saß S, Evitt A, Kourist R, Bornscheuer UT (2012) The short form of the recombinant CAL-A-type lipase UM03410 from the smut fungus Ustilago maydis exhibits an inherent trans-fatty acid selectivity. Appl Microbiol Biotechnol 94:141–150. doi:10.1007/s00253-012-3903-9

    Article  CAS  Google Scholar 

  • Cano-Canchola C, Acevedo L, Ponce-Noyola P, Flores-Martínez A, Flores-Carreón A, Leal-Morales CA (2000) Induction of lytic enzymes by the interaction of Ustilago maydis with Zea mays tissues. Fungal Genet Biol 29:145–151. doi:10.1006/fgbi.2000.1196

    Article  CAS  Google Scholar 

  • Chundawat SP, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:121–145. doi:10.1146/annurev-chembioeng-061010-114205

    Article  CAS  Google Scholar 

  • Cortes-Sánchez A, Hernández-Sánchez H, Jaramillo-Flores M (2011) Production of glycolipids with antimicrobial activity by Ustilago maydis FBD12 in submerged culture. Afr J Microbiol Res 5:2512–2523

    Google Scholar 

  • Couturier M, Navarro D, Olivé C, Chevret D, Haon M, Favel A, Lesage-Meessen L, Henrissat B, Coutinho PM, Berrin JG (2012) Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis. BMC Genomics 2:57. doi:10.1186/1471-2164-13-57

    Article  CAS  Google Scholar 

  • Daniell H, Streatfield SJ, Wycoff K (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6:219–226

    Article  CAS  Google Scholar 

  • De Pourcq K, De Schutter K, Callewaert N (2010) Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl Microbiol Biotechnol 87:1617–1631. doi:10.1007/s00253-010-2721-1

    Article  CAS  Google Scholar 

  • Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430. doi:10.1111/j.1364-3703.2011.00783.x

    Article  Google Scholar 

  • Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306. doi:10.1016/j.biotechadv.2009.01.008

    Article  CAS  Google Scholar 

  • Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V, Kahnt J, Osorio S, Tohge T, Fernie AR, Feussner I, Feussner K, Meinicke P, Stierhof YD, Schwarz H, Macek B, Mann M, Kahmann R (2011) Metabolic priming by a secreted fungal effector. Nature 478:395–398. doi:10.1038/nature10454

    Article  CAS  Google Scholar 

  • Doehlemann G, Wahl R, Vranes M, de Vries RP, Kämper J, Kahmann R (2008) Establishment of compatibility in the Ustilago maydis/maize pathosystem. J Plant Physiol 165:29–40. doi:10.1016/j.jplph.2007.05.016

    Article  CAS  Google Scholar 

  • Doehlemann G, van der Linde K, Assmann D, Schwammbach D, Hof A, Mohanty A, Jackson D, Kahmann R (2009) Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLoS Pathog 5:e1000290. doi:10.1371/journal.ppat.1000290

    Article  CAS  Google Scholar 

  • Drews A, Arellano-Garcia H (2008) Model-based determination of changing kinetics in high cell density cultures using respiration data. Chem Eng Sci 63:4789–4799

    Article  CAS  Google Scholar 

  • Drews A, Kraume M (2005) Process improvement by application of membrane bioreactors. Chem Eng Res Design 83:276–284

    Article  CAS  Google Scholar 

  • Drews A, Kraume M (2007) On maintenance models in severely and long-term limited membrane bioreactor cultivations. Biotechnol Bioeng 96:892–903. doi:10.1002/bit.21211

    Article  CAS  Google Scholar 

  • Fernández-Alvarez A, Elías-Villalobos A, Ibeas JI (2010) Protein glycosylation in the phytopathogen Ustilago maydis: From core oligosaccharide synthesis to the ER glycoprotein quality control system, a genomic analysis. Fungal Genet Biol 47:727–735. doi:10.1016/j.fgb.2010.06.004

    Article  CAS  Google Scholar 

  • Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kües U, Kumar TK, Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Dueñas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, St John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719. doi:10.1126/science.1221748

    Article  CAS  Google Scholar 

  • Fonseca-García C, López MG, Aréchiga-Carvajal ET, Ruiz-Herrera J (2011) A novel polysaccharide secreted by pal/rim mutants of the phytopathogen fungus Ustilago maydis. Carbohydr Polym 86:1646–1650

    Article  CAS  Google Scholar 

  • Geilen FMA, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W (2010) Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system. Angew Chem, Int Ed Engl 49:5510–5514

    Article  CAS  Google Scholar 

  • Göhre V, Vollmeister E, Bölker M, Feldbrügge M (2012) Microtubule-dependent membrane dynamics in Ustilago maydis: trafficking and function of Rab5a-positive endosomes. Commun Integr Biol 5:485–490

    Article  Google Scholar 

  • Graumann K, Premstaller A (2006) Manufacturing of recombinant therapeutic proteins in microbial systems. Biotechnol J 1:164–186. doi:10.1002/biot.200500051

    Article  CAS  Google Scholar 

  • Hartmann HA, Krüger J, Lottspeich F, Kahmann R (1999) Environmental signals controlling sexual development of the corn smut fungus Ustilago maydis through the transcriptional regulator Prf1. Plant Cell 11:1293–1306

    CAS  Google Scholar 

  • Haskins RH, Thorn JA (1951) Biochemistry of the Ustilaginales. VII. Antibiotic activity of ustilagic acid. Can J Bot 29:585–592

    Article  CAS  Google Scholar 

  • Haskins RH, Thorn JA, Boothroyd B (1955) Biochemistry of the Ustilaginales. XI. Metabolic products of Ustilago zeae in submerged culture. Can J Microbiol 1:749–756

    Article  CAS  Google Scholar 

  • Heimel K, Scherer M, Vranes M, Wahl R, Pothiratana C, Schüler D, Vincon V, Finkernagel F, Flor-Parra I, Kämper J (2010) The transcription factor Rbf1 is the master regulator for b-mating type controlled pathogenic development in Ustilago maydis. PLoS Pathog 6:e1001035. doi:10.1371/journal.ppat.1001035

    Article  CAS  Google Scholar 

  • Hemetsberger C, Herrberger C, Zechmann B, Hillmer M, Doehlemann G (2012) The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathog 8:e1002684. doi:10.1371/journal.ppat.1002684

    Article  CAS  Google Scholar 

  • Hewald S, Josephs K, Bölker M (2005) Genetic analysis of biosurfactant production in Ustilago maydis. Appl Environ Microbiol 71:3033–3040. doi:10.1128/AEM.71.6.3033-3040.2005

    Article  CAS  Google Scholar 

  • Hewald S, Linne U, Scherer M, Marahiel MA, Kämper J, Bölker M (2006) Identification of a gene cluster for biosynthesis of mannosylerythritol lipids in the basidiomycetous fungus Ustilago maydis. Appl Environ Microbiol 72:5469–5477. doi:10.1128/AEM.00506-06

    Article  CAS  Google Scholar 

  • Hoegger PJ, Kilaru S, James TY, Thacker JR, Kües U (2006) Phylogenetic comparison and classification of laccases and related multicopper oxidase protein sequences. FEBS J 273:2308–2326

    Article  CAS  Google Scholar 

  • Holliday R (1974) Ustilago maydis. In: King RC (ed) Handbook of genetics, vol 1. Plenum Press, New York, pp 575–595

    Google Scholar 

  • Holliday R (2004) Early studies on recombination and DNA repair in Ustilago maydis. DNA Repair 3:671–682. doi:10.1016/j.dnarep.2004.02.002

    Article  CAS  Google Scholar 

  • Idiris A, Tohda H, Bi KW, Isoai A, Kumagai H, Giga-Hama Y (2006) Enhanced productivity of protease-sensitive heterologous proteins by disruption of multiple protease genes in the fission yeast Schizosaccaromyces pombe. Appl Microbiol Biotechnol 73:404–420

    Article  CAS  Google Scholar 

  • Idiris A, Tohda H, Sasaki M, Okada K, Kumagai H, Giga-Hama Y (2010) Enhanced protein secretion from multiprotease-deficient fission yeast by modification of its vacuolar protein sorting pathway. Appl Microbiol Biotechnol 85:667–677

    Article  CAS  Google Scholar 

  • Iturriaga G, Jefferson RA, Bevan MW (1989) Endoplasmic reticulum targeting and glycosylation of hybrid proteins in transgenic tobacco. Plant Cell 1:381–390. doi:10.1105/tpc.1.3.381

    CAS  Google Scholar 

  • Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397

    Article  CAS  Google Scholar 

  • Jäger G, Büchs J (2012) Biocatalytic conversion of lignocellulose to platform chemicals. Biotechnol J 7:1122–1136. doi:10.1002/biot.201200033

    Article  CAS  Google Scholar 

  • Jin FJ, Watanabe T, Juvvadi PR, Maruyama J, Arioka M, Kitamoto K (2007) Double disruption of the proteinase genes, tppA and pepE, increases the production level of human lysozyme by Aspergillus oryzae. Appl Microbiol Biotechnol 76:1059–1068

    Article  CAS  Google Scholar 

  • Juárez-Montiel M, Ruiloba de León S, Chávez-Camarillo G, Hernández-Rodríguez C, Villa-Tanaca L (2011) Huitlacoche (corn smut), caused by the phytopathogenic fungus Ustilago maydis, as a functional food. Rev Iberoam Micol 28:69–73

    Article  Google Scholar 

  • Kahmann R, Schirawski J (2007) Mating in the smut fungi: from a to b to the downstream cascades. In: Heitman J, Kronstad JW, Taylor JW, Casselton LA (eds) Sex in fungi: molecular determination and evolutionary implications. ASM Press, Washington, pp 377–387

    Google Scholar 

  • Kämper J, Reichmann M, Romeis T, Bölker M, Kahmann R (1995) Multiallelic recognition: nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis. Cell 81:73–83

    Article  Google Scholar 

  • Kämper J, Kahmann R, Bölker M, Ma LJ, Brefort T, Saville BJ, Banuett F, Kronstad JW, Gold SE, Müller O, Perlin MH, Wösten HA, de Vries R, Ruiz-Herrera J, Reynaga-Peña CG, Snetselaar K, McCann M, Pérez-Martin J, Feldbrügge M, Basse CW, Steinberg G, Ibeas JI, Holloman W, Guzman P, Farman M, Stajich JE, Sentandreu R, González-Prieto JM, Kennell JC, Molina L, Schirawski J, Mendoza-Mendoza A, Greilinger D, Münch K, Rössel N, Scherer M, Vranes M, Ladendorf O, Vincon V, Fuchs U, Sandrock B, Meng S, Ho EC, Cahill MJ, Boyce KJ, Klose J, Klosterman SJ, Deelstra HJ, Ortiz-Castellanos L, Li W, Sanchez-Alonso P, Schreier PH, Häuser-Hahn I, Vaupel M, Koopmann E, Friedrich G, Voss H, Schlüter T, Margolis J, Platt D, Swimmer C, Gnirke A, Chen F, Vysotskaia V, Mannhaupt G, Güldener U, Münsterkotter M, Haase D, Oesterheld M, Mewes HW, Mauceli EW, DeCaprio D, Wade CM, Butler J, Young S, Jaffe DB, Calvo S, Nusbaum C, Galagan J, Birren BW (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:97–101. doi:10.1038/nature05248

    Article  CAS  Google Scholar 

  • Katsivela E, Kleppe F, Lang S, Wagner F (1995) Ustilago maydis lipase I. Hydrolysis and ester-synthesis activities of crude enzyme preparation. Enzyme Microb Tech 17:739–745. doi:10.1016/0141-0229(94)00127-d

    Article  CAS  Google Scholar 

  • Kellner R, Vollmeister E, Feldbrügge M, Begerow D (2011) Interspecific sex in grass smuts and the genetic diversity of their pheromone-receptor system. PLoS Genet 7:e1002436. doi:10.1371/journal.pgen.1002436

    Article  CAS  Google Scholar 

  • Khrunyk Y, Münch K, Schipper K, Lupas AN, Kahmann R (2010) The use of FLP-mediated recombination for the functional analysis of an effector gene family in the biotrophic smut fungus Ustilago maydis. New Phytol 187:957–968. doi:10.1111/j.1469-8137.2010.03413.x

    Article  CAS  Google Scholar 

  • Kirk O, Christensen MW (2002) Lipases from Candida antarctica: unique biocatalysts from a unique origin. Org Process Res Dev 6:446–451. doi:10.1021/op0200165

    Article  CAS  Google Scholar 

  • Kitamoto D, Akiba S, Hioki C, Tabuchi T (1990) Extracellular accumulation of mannosylerythritol lipids by a strain of Candida antarctica. Agric Biol Chem 54:31–36

    Article  CAS  Google Scholar 

  • Kitamoto D, Isoda H, Nakahara T (2002) Functions and potential applications of glycolipid biosurfactants – from energy-saving materials to gene delivery carriers. J Biosci Bioeng 94(3):187–201

    CAS  Google Scholar 

  • Klement T, Milker S, Jäger G, Grande PM, Domínguez de María P, Büchs J (2012) Biomass pretreatment affects Ustilago maydis in producing itaconic acid. Microb Cell Fact 11:43. doi:10.1186/1475-2859-11-43

    Article  CAS  Google Scholar 

  • Koepke J, Kaffarnik F, Haag C, Zarnack K, Luscombe NM, König J, Ule J, Kellner R, Begerow D, Feldbrügge M (2011) The RNA-binding protein Rrm4 is essential for efficient secretion of endochitinase Cts1. Mol Cell Proteomics 10:M111.011213. doi:10.1074/mcp.M111.011213

    Article  CAS  Google Scholar 

  • König J, Baumann S, Koepke J, Pohlmann T, Zarnack K, Feldbrügge M (2009) The fungal RNA-binding protein Rrm4 mediates long-distance transport of ubi1 and rho3 mRNAs. EMBO J 28:1855–1866. doi:10.1038/emboj.2009.145

    Article  CAS  Google Scholar 

  • Kües U, Rühl M (2011) Multiple multi-copper oxidase families in Basidiomycetes—what for? Curr Genet 12:17–94

    Google Scholar 

  • Laurie JD, Ali S, Linning R, Mannhaupt G, Wong P, Güldener U, Münsterkotter M, Moore R, Kahmann R, Bakkeren G, Schirawski J (2012) Genome comparison of barley and maize smut fungi reveals targeted loss of RNA silencing components and species-specific presence of transposable elements. Plant Cell 24:1733–1745. doi:10.1105/tpc.112.097261

    Article  CAS  Google Scholar 

  • Lei XG, Porres JM (2003) Phytase enzymology, applications, and biotechnology. Biotechnol Lett 25:1787–1794

    Article  CAS  Google Scholar 

  • Liu Y, Koh CM, Ji L (2011) Bioconversion of crude glycerol to glycolipids in Ustilago maydis. Bioresour Technol 102:3927–3933. doi:10.1016/j.biortech.2010.11.115

    Article  CAS  Google Scholar 

  • Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M, Denning DW, Galagan JE, Nierman WC, Yu J, Archer DB, Bennett JW, Bhatnagar D, Cleveland TE, Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R, Iwashita K, Juvvadi PR, Kato M, Kato Y, Kin T, Kokubun A, Maeda H, Maeyama N, Maruyama J, Nagasaki H, Nakajima T, Oda K, Okada K, Paulsen I, Sakamoto K, Sawano T, Takahashi M, Takase K, Terabayashi Y, Wortman JR, Yamada O, Yamagata Y, Anazawa H, Hata Y, Koide Y, Komori T, Koyama Y, Minetoki T, Suharnan S, Tanaka A, Isono K, Kuhara S, Ogasawara N, Kikuchi H (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161

    Article  Google Scholar 

  • Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F (2009) New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 20:372–380. doi:10.1016/j.copbio.2009.05.009

    Article  CAS  Google Scholar 

  • Mason HS, Warzecha H, Mor T, Arntzen CJ (2002) Edible plant vaccines: applications for prophylactic and therapeutic molecular medicine. Trends Mol Med 8:324–329

    Article  CAS  Google Scholar 

  • Mei B, Budde AD, Leong SA (1993) sid1, a gene initiating siderophore biosynthesis in Ustilago maydis: molecular characterization, regulation by iron, and role in phytopathogenicity. Proc Natl Acad Sci USA 90:903–907

    Article  CAS  Google Scholar 

  • Mendgen K, Hahn M (2002) Plant infection and the establishment of fungal biotrophy. Trends Plant Sci 7:352–356

    Article  CAS  Google Scholar 

  • Mercado-Flores Y, Guerra-Sánchez G, Villa-Tanaca L, Hernández-Rodríguez C (2003a) Purification and characterization of an extracellular non-aspartyl acid protease (pumAe) from Ustilago maydis. Curr Microbiol 47:408–411

    Article  CAS  Google Scholar 

  • Mercado-Flores Y, Hernández-Rodríguez C, Ruiz-Herrera J, Villa-Tanaca L (2003b) Proteinases and exopeptidases from the phytopathogenic fungus Ustilago maydis. Mycologia 95:327–339

    Article  CAS  Google Scholar 

  • Mimee B, Labbé C, Pelletier R, Bélanger RR (2005) Antifungal activity of flocculosin, a novel glycolipid isolated from Pseudozyma flocculosa. Antimicrob Agents Chemother 49:1597–1599

    Article  CAS  Google Scholar 

  • Moir DT, Mao JI (1990) Protein secretion systems in microbial and mammalian cells. Bioprocess Technol 9:67–94

    CAS  Google Scholar 

  • Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2008) Identification of Ustilago cynodontis as a new producer of glycolipid biosurfactants, mannosylerythritol lipids, based on ribosomal DNA sequences. J Oleo Sci 57:549–556

    Article  CAS  Google Scholar 

  • Morita T, Ishibashi Y, Fukuoka T, Imura T, Sakai H, Abe M, Kitamoto D (2009) Production of glycolipid biosurfactants, mannosylerythritol lipids, by a smut fungus, Ustilago scitaminea NBRC 32730. Biosci Biotechnol Biochem 73:788–792

    Article  CAS  Google Scholar 

  • Morita T, Ito E, Kitamoto HK, Takegawa K, Fukuoka T, Imura T, Kitamoto D (2010a) Identification of the gene PaEMT1 for biosynthesis of mannosylerythritol lipids in the basidiomycetous yeast Pseudozyma antarctica. Yeast 27:905–917. doi:10.1002/yea.1794

    Article  CAS  Google Scholar 

  • Morita T, Kitagawa M, Yamamoto S, Sogabe A, Imura T, Fukuoka T, Kitamoto D (2010b) Glycolipid biosurfactants, mannosylerythritol lipids, repair the damaged hair. J Oleo Sci 59:267–272

    Article  CAS  Google Scholar 

  • Morita T, Ishibashi Y, Hirose N, Wada K, Takahashi M, Fukuoka T, Imura T, Sakai H, Abe M, Kitamoto D (2011) Production and characterization of a glycolipid biosurfactant, mannosylerythritol lipid B, from sugarcane juice by Ustilago scitaminea NBRC 32730. Biosci Biotechnol Biochem 75:1371–1376

    Article  CAS  Google Scholar 

  • Müller O, Kahmann R, Aguilar G, Trejo-Aguilar B, Wu A, de Vries RP (2008) The secretome of the maize pathogen Ustilago maydis. Fungal Genet Biol 45:S63–70. doi:10.1016/j.fgb.2008.03.012

    Article  CAS  Google Scholar 

  • Nakajima M, Yamashita T, Takahashi M, Nakano Y, Takeda T (2012a) Identification, cloning, and characterization of beta-glucosidase from Ustilago esculenta. Appl Microbiol Biotechnol 93:1989–1998. doi:10.1007/s00253-011-3538-2

    Article  CAS  Google Scholar 

  • Nakajima M, Yamashita T, Takahashi M, Nakano Y, Takeda T (2012b) A novel glycosylphosphatidylinositol-anchored glycoside hydrolase from Ustilago esculenta functions in β-1,3-glucan degradation. Appl Environ Microbiol 78:5682–5689. doi:10.1128/AEM.00483-12

    Article  CAS  Google Scholar 

  • Neilands JB (1952) A crystalline organo-iron pigment from a rust fungus (Ustilago sphaerogena). J Am Chem Soc 74:4856–4847

    Article  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    CAS  Google Scholar 

  • Nestl BM, Nebel BA, Hauer B (2011) Recent progress in industrial biocatalysis. Curr Opin Chem Biol 15:187–193. doi:10.1016/j.cbpa.2010.11.019

    Article  CAS  Google Scholar 

  • Raboin LM, Selvi A, Oliveira KM, Paulet F, Calatayud C, Zapater MF, Brottier P, Luzaran R, Garsmeur O, Carlier J, D'Hont A (2007) Evidence for the dispersal of a unique lineage from Asia to America and Africa in the sugarcane fungal pathogen Ustilago scitaminea. Fungal Genet Biol 44:64–76. doi:10.1016/j.fgb.2006.07.004

    Article  CAS  Google Scholar 

  • Reed RW, Holder MA (1953) The antibacterial spectrum of ustilagic acid. Can J Med Sci 31:505–511

    CAS  Google Scholar 

  • Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194. doi:10.1016/j.biotechadv.2008.11.001

    Article  CAS  Google Scholar 

  • Scherer M, Heimel K, Starke V, Kämper J (2006) The Clp1 protein is required for clamp formation and pathogenic development of Ustilago maydis. Plant Cell 18:2388–2401. doi:10.1105/tpc.106.043521

    Article  CAS  Google Scholar 

  • Schirawski J, Heinze B, Wagenknecht M, Kahmann R (2005) Mating type loci of Sporisorium reilianum: novel pattern with three a and multiple b specificities. Eukaryot Cell 4:1317–1327. doi:10.1128/EC.4.8.1317-1327.2005

    Article  CAS  Google Scholar 

  • Schirawski J, Mannhaupt G, Münch K, Brefort T, Schipper K, Doehlemann G, Di Stasio M, Rössel N, Mendoza-Mendoza A, Pester D, Müller O, Winterberg B, Meyer E, Ghareeb H, Wollenberg T, Münsterkotter M, Wong P, Walter M, Stukenbrock E, Güldener U, Kahmann R (2010) Pathogenicity determinants in smut fungi revealed by genome comparison. Science 330:1546–1548. doi:10.1126/science.1195330

    Article  CAS  Google Scholar 

  • Schmidt FR (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65:363–372. doi:10.1007/s00253-004-1656-9

    Article  CAS  Google Scholar 

  • Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22:142–146. doi:10.1016/j.tibtech.2004.01.010

    Article  CAS  Google Scholar 

  • Sodoyer R (2004) Expression systems for the production of recombinant pharmaceuticals. BioDrugs 18:51–62

    Article  CAS  Google Scholar 

  • Spellig T, Bottin A, Kahmann R (1996) Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus Ustilago maydis. Mol Gen Genet 252:503–509

    CAS  Google Scholar 

  • Spoeckner S, Wray V, Nimtz M, Lang S (1999) Glycolipids of the smut fungus Ustilago maydis from cultivation on renewable resources. Appl Microbiol Biotechnol 51:33–39

    Article  CAS  Google Scholar 

  • Steinberg G, Pérez-Martin J (2008) Ustilago maydis, a new fungal model system for cell biology. Trends Cell Biol 18:61–67. doi:10.1016/j.tcb.2007.11.008

    Article  CAS  Google Scholar 

  • Stock J, Sarkari P, Kreibich S, Brefort T, Feldbrügge M, Schipper K (2012) Applying unconventional secretion of the endochitinase Cts1 to export heterologous proteins in Ustilago maydis. J Biotechnol 161:80–91. doi:10.1016/j.jbiotec.2012.03.004

    Article  CAS  Google Scholar 

  • Stoll M, Begerow D, Oberwinkler F (2005) Molecular phylogeny of Ustilago, Sporisorium, and related taxa based on combined analyses of rDNA sequences. Mycol Res 109:342–356

    Article  CAS  Google Scholar 

  • Suzuki T, Choi JH, Kawaguchi T, Yamashita K, Morita A, Hirai H, Nagai K, Hirose T, Omura S, Sunazuka T, Kawagishi H (2012) Makomotindoline from Makomotake, Zizania latifolia infected with Ustilago esculenta. Bioorg Med Chem Lett 22:4246–4248. doi:10.1016/j.bmcl.2012.05.021

    Article  CAS  Google Scholar 

  • Teichmann B, Linne U, Hewald S, Marahiel MA, Bölker M (2007) A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis. Mol Microbiol 66:525–533. doi:10.1111/j.1365-2958.2007.05941.x

    Article  CAS  Google Scholar 

  • Teichmann B, Liu L, Schink KO, Bölker M (2010) Activation of the ustilagic acid biosynthesis gene cluster in Ustilago maydis by the C2H2 zinc finger transcription factor Rua1. Appl Environ Microbiol 76:2633–2640. doi:10.1128/AEM.02211-09

    Article  CAS  Google Scholar 

  • Teichmann B, Labbé C, Lefebvre F, Bölker M, Linne U, Bélanger RR (2011) Identification of a biosynthesis gene cluster for flocculosin a cellobiose lipid produced by the biocontrol agent Pseudozyma flocculosa. Mol Microbiol 79:1483–1495. doi:10.1111/j.1365-2958.2010.07533.x

    Article  CAS  Google Scholar 

  • Vaishnav P, Demain AL (2011) Unexpected applications of secondary metabolites. Biotechnol Adv 29:223–229. doi:10.1016/j.biotechadv.2010.11.006

    Article  CAS  Google Scholar 

  • Vakhlu JK, A. (2006) Yeast lipases: enzyme purification, biochemical properties and gene cloning. Electron J Biotechnol 9. doi:10.225/vol9-issue1fulltext-9

  • Valdez-Morales M, Barry K, Fahey GC Jr, Domínguez J, Gonzalez de Meja E, Valverde ME, Paredes-López O (2010) Effects of maize genotype, developmental stage, and cooking process on the nutraceutical potential of huitlacoche (Ustilago maydis). Food Chem 119:689–697

    Article  CAS  Google Scholar 

  • Valverde ME, Paredes-López O, Pataky JK, Guevara-Lara F (1995) Huitlacoche (Ustilago maydis) as a food source—biology, composition, and production. Crit Rev Food Sci Nutr 35:191–229. doi:10.1080/10408399509527699

    Article  CAS  Google Scholar 

  • Vánky K (2011) Smut fungi of the world. APS press, St Paul

    Google Scholar 

  • Vollmeister E, Schipper K, Baumann S, Haag C, Pohlmann T, Stock J, Feldbrügge M (2012a) Fungal development of the plant pathogen Ustilago maydis. FEMS Microbiol Rev 36:59–77. doi:10.1111/j.1574-6976.2011.00296.x

    Article  CAS  Google Scholar 

  • Vollmeister E, Schipper K, Feldbrügge M (2012b) Microtubule-dependent mRNA transport in the model microorganism Ustilago maydis. RNA Biol 9:261–268. doi:10.4161/rna.19432

    Article  CAS  Google Scholar 

  • Wang J, Budde AD, Leong SA (1989) Analysis of ferrichrome biosynthesis in the phytopathogenic fungus Ustilago maydis: cloning of an ornithine-N5-oxygenase gene. J Bacteriol 171:2811–2818

    CAS  Google Scholar 

  • Ward OP (2012) Production of recombinant proteins by filamentous fungi. Biotechnol Adv 30:1119–1139

    Article  CAS  Google Scholar 

  • Winterberg B, Uhlmann S, Linne U, Lessing F, Marahiel MA, Eichhorn H, Kahmann R, Schirawski J (2010) Elucidation of the complete ferrichrome A biosynthetic pathway in Ustilago maydis. Mol Microbiol 75:1260–1271. doi:10.1111/j.1365-2958.2010.07048.x

    Article  CAS  Google Scholar 

  • Xu XW, Ke WD, Yu XP, Wen J, Ge S (2008) A preliminary study on population genetic structure and phylogeography of the wild and cultivated Zizania latifolia (Poaceae) based on Adh1a sequences. Theor Appl Genet 116:835–843. doi:10.1007/s00122-008-0717-3

    Article  Google Scholar 

  • Yuan WM, Gentil GD, Budde AD, Leong SA (2001) Characterization of the Ustilago maydis sid2 gene, encoding a multidomain peptide synthetase in the ferrichrome biosynthetic gene cluster. J Bacteriol 183:4040–4051. doi:10.1128/JB.183.13.4040-4051.2001

    Article  CAS  Google Scholar 

  • Zarnack K, Maurer S, Kaffarnik F, Ladendorf O, Brachmann A, Kämper J, Feldbrügge M (2006) Tetracycline-regulated gene expression in the pathogen Ustilago maydis. Fungal Genet Biol 43:727–738. doi:10.1016/j.fgb.2006.05.006

    Article  CAS  Google Scholar 

  • Zuther K, Mayser P, Hettwer U, Wu W, Spiteller P, Kindler BL, Karlovsky P, Basse CW, Schirawski J (2008) The tryptophan aminotransferase Tam1 catalyses the single biosynthetic step for tryptophan-dependent pigment synthesis in Ustilago maydis. Mol Microbiol 68:152–172. doi:10.1111/j.1365-2958.2008.06144.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge all lab members for valuable discussion and critical reading of the manuscript. Special thanks for providing the photos and the chemical structure displayed in Figs. 1, 2, 3 and 4 to Dr. Longjang Fan, Hanne Horn, Dorothee Schipper, Thorsten Langner, Janpeter Stock and Sebastian Schulz, respectively. We further acknowledge the excellent technical assistance by Bettina Axler. Our applied work was supported by the Ministry of Innovation, Science and Research of North Rhine-Westphalia and the Heinrich Heine University Düsseldorf (HHUD) through funding within the CLIB-Graduate Cluster Industrial Biotechnology and by a grant from the Strategic Research Fund of the HHUD to KS. Basic research in the laboratory was funded by the Deutsche Forschungsgemeinschaft (DFG) as part of the German/Mexican research group FOR1334 (FE 448/5-1), DFG grant FE448/3-2 as well as the HHUD graduate schools iGRAD-MOI and iGRAD-Plant.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Schipper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 82 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldbrügge, M., Kellner, R. & Schipper, K. The biotechnological use and potential of plant pathogenic smut fungi. Appl Microbiol Biotechnol 97, 3253–3265 (2013). https://doi.org/10.1007/s00253-013-4777-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4777-1

Keywords

Navigation