Skip to main content
Log in

Immobilized redox mediators for electrochemical NAD(P)+ regeneration

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The applicability of dissolved redox mediators for NAD(P)+ regeneration has been demonstrated several times. Nevertheless, the use of mediators in solutions for sensor applications is not a very convenient strategy since the analysis is not reagentless and long stabilization times occur. The most important drawbacks of dissolved mediators in biocatalytic applications are interferences during product purification, limited reusability of the mediators, and their cost-intensive elimination from wastewater. Therefore, the use of immobilized mediators has both economic and ecological advantages. This work critically reviews the current state-of-art of immobilized redox mediators for electrochemical NAD(P)+ regeneration. Various surface modification techniques, such as adsorption polymerization and covalent linkage, as well as the corresponding NAD(P)+ regeneration rates and the operational stability of the immobilized mediator films, will be discussed. By comparison with other existing regeneration systems, the technical potential and future perspectives of biocatalytic redox reactions based on electrochemically fed immobilized mediators will be assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Addo PK, Arechederra RL, Minteer SD (2010) Evaluating enzyme cascades for methanol/air biofuel cells based on NAD+-dependent enzymes. Electroanal 22:807–812

    CAS  Google Scholar 

  • Adlercreutz P (1996) Cofactor regeneration in biocatalysis in organic media. Biocatal Biotransform 14:1–30

    Google Scholar 

  • Alpat Ş, Telefoncu A (2010) Development of an alcohol dehydrogenase biosensor for ethanol determination with toluidine blue O covalently attached to a cellulose acetate modified electrode. Sensors 10:748–764

    CAS  Google Scholar 

  • Anne A, Bourdillon C, Daninos S, Moiroux J (1999) Can the combination of electrochemical regeneration of NAD+, selectivity of L-α-amino-acid dehydrogenase, and reductive amination of α-keto-acid be applied to the inversion of configuration of a L-α-amino-acid? Biotechnol Bioeng 64:101–107

    CAS  Google Scholar 

  • Antiochia R, Lavagnini I, Magno F (2005) Electrocatalytic oxidation of NADH at single-wall carbon-nanotube-paste electrodes: kinetic considerations for use of a redox mediator in solution and dissolved in the paste. Anal Bioanal Chem 381:1355–1361

    CAS  Google Scholar 

  • Arechederra MN, Addo PK, Minteer SD (2011) Poly(neutral red) as a NAD+ reduction catalyst and a NADH oxidation catalyst: towards the development of a rechargeable biobattery. Electrochim Acta 56:1585–1590

    CAS  Google Scholar 

  • Bai J, Bo X, Qi B, Guo L (2010) A novel polycatechol/ordered mesoporous carbon composite film modified electrode and its electrocatalytic application. Electroanal 22:1750–1756

    CAS  Google Scholar 

  • Bala C, Rotariu L, Vasilescu A, Magearu V (2004) Development of a new ethanol biosensor with electropolymerised meldola blue as mediator. Analele Universitaii din Bucuresti - Chimie I-II: 19–25

  • Balamurugan A, Chen S-M (2008) Voltammetric oxidation of NADH at phenyl azo aniline/PEDOT modified electrode. Sensor Actuator B Chem 129:850–858

    Google Scholar 

  • Bartlett PN, Birkin PR, Wallace ENK (1997) Oxidation of [small beta]-nicotinamide adenine dinucleotide (NADH) at poly(aniline)-coated electrodes. J Chem Soc Faraday Trans 93:1951–1960

    CAS  Google Scholar 

  • Barzegar A, Moosavi-Movahedi A, Ganjali M (2009) Amplification of electrocatalytic oxidation of NADH based on cysteine nanolayers. J Appl Electrochem 39:1111–1116

    CAS  Google Scholar 

  • Biade AE, Bourdillon C, Laval JM, Mairesse G, Moiroux J (1992) Complete conversion of L-lactate into D-lactate. A generic approach involving enzymic catalysis, electrochemical oxidation of NADH and electrochemical reduction of pyruvate. J Am Chem Soc 114:893–897

    CAS  Google Scholar 

  • Blankespoor RL, Miller LL (1984) Electrochemical oxidation of NADH: kinetic control by product inhibition and surface coating. J Electroanal Chem 171:231–241

    CAS  Google Scholar 

  • Cai C-X, Xue K-H (1997a) Electrocatalysis of NADH oxidation with electropolymerized films of azure I. J Electroanal Chem 427:147–153

    CAS  Google Scholar 

  • Cai CX, Xue KH (1997b) Electrocatalysis of NADH oxidation with electropolymerized films of nile blue A. Anal Chim Acta 343:69–77

    CAS  Google Scholar 

  • Cai CX, Xue KH (1998) Electrochemical polymerization of toluidine blue O and its electrocatalytic activity toward NADH oxidation. Talanta 47:1107–1119

    CAS  Google Scholar 

  • Catalin Popescu I, DomInguez E, Narváez A, Pavlov V, Katakis I (1999) Electrocatalytic oxidation of NADH at graphite electrodes modified with osmium phenanthrolinedione. J Electroanal Chem 464:208–214

    CAS  Google Scholar 

  • Chenault H, Whitesides G (1987) Regeneration of nicotinamide cofactors for use in organic synthesis. Appl Biochem Biotechnol 14:147–197

    CAS  Google Scholar 

  • Ciszewski A, Milczarek G (2000) Electrocatalysis of NADH oxidation with an electropolymerized film of 1,4-bis(3,4-dihydroxyphenyl)-2,3-dimethylbutane. Anal Chem 72:3203–3209

    CAS  Google Scholar 

  • Cui L, Ai S, Shang K, Meng X, Wang C (2011) Electrochemical determination of NADH using a glassy carbon electrode modified with Fe3O4 nanoparticles and poly-2,6-pyridinedicarboxylic acid, and its application to the determination of antioxidant capacity. Microchim Acta 174:31–39

    CAS  Google Scholar 

  • Curulli A, Carelli I, Trischitta O, Palleschi G (1997) Enzyme electrode probes obtained by electropolymerization of monomers with PMS and selected dehydrogenase enzymes. Talanta 44:1659–1669

    CAS  Google Scholar 

  • de Assis dos Santos Silva F, Lopes CB, de Oliveira Costa E, Lima PR, Kubota LT, Goulart MOF (2010) Poly-xanthurenic acid as an efficient mediator for the electrocatalytic oxidation of NADH. Electrochem Commun 12:450–454

    Google Scholar 

  • de Lucca AR, de Santos AS, Pereira AC, Kubota LT (2002) Electrochemical behavior and electrocatalytic study of the methylene green coated on modified silica gel. J Colloid Interface Sci 254:113–119

    Google Scholar 

  • Dicu D, Munteanu F-D, Catalin Popescu I, Gorton L (2003) Indophenol and O-quinone derivatives immobilized on zirconium phosphate for NADH electro-oxidation. Anal Lett 36:1755–1779

    CAS  Google Scholar 

  • Dilgin Y, Gorton L, Nisli G (2007) Photoelectrocatalytic oxidation of NADH with electropolymerized toluidine blue O. Electroanal 19:286–293

    CAS  Google Scholar 

  • Dilgin D, Gligor D, Gökçel H, Dursun Z, Dilgin Y (2011) Glassy carbon electrode modified with poly-Neutral Red for photoelectrocatalytic oxidation of NADH. Microchim Acta 173:469–476

    CAS  Google Scholar 

  • Doaga R, McCormac T, Dempsey E (2009) Electrochemical sensing of NADH and glutamate based on Meldola Blue in 1,2-diaminobenzene and 3,4-ethylenedioxythiophene polymer films. Electroanal 21:2099–2108

    CAS  Google Scholar 

  • Doumèche B, Blum LJ (2010) NADH oxidation on screen-printed electrode modified with a new phenothiazine diazonium salt. Electrochem Commun 12:1398–1402

    Google Scholar 

  • Fassouane A, Laval J-M, Moiroux J, Bourdillon C (1990) Electrochemical regeneration of NAD in a plug-flow reactor. Biotechnol Bioeng 35:935–939

    CAS  Google Scholar 

  • Findrik Z, Simunovic I, Vasic-Racki Ð (2008) Coenzyme regeneration catalyzed by NADH oxidase from Lactobacillus brevis in the reaction of l-amino acid oxidation. Biochem Eng J 39:319–327

    CAS  Google Scholar 

  • Ganesan V, Ramaraj R (2000) Mediated reduction of oxygen at poly(phenosafranine) modified electrodes. J Appl Electrochem 30:757–760

    CAS  Google Scholar 

  • Gargiulo S, Arends IWCE, Hollmann F (2011) A photoenzymatic system for alcohol oxidation. ChemCatChem 3:338–342

    CAS  Google Scholar 

  • Geueke B, Riebel B, Hummel W (2003) NADH oxidase from Lactobacillus brevis: a new catalyst for the regeneration of NAD. Enzyme Microb Technol 32:205–211

    CAS  Google Scholar 

  • Ghanem MA, Chrétien J-M, Kilburn JD, Bartlett PN (2009) Electrochemical and solid-phase synthetic modification of glassy carbon electrodes with dihydroxybenzene compounds and the electrocatalytic oxidation of NADH. Bioelectrochemistry 76:115–125

    CAS  Google Scholar 

  • Gligor D, Dilgin Y, Popescu IC, Gorton L (2009a) Photoelectrocatalytic oxidation of NADH at a graphite electrode modified with a new polymeric phenothiazine. Electroanal 21:360–367

    CAS  Google Scholar 

  • Gligor D, Dilgin Y, Popescu IC, Gorton L (2009b) Poly-phenothiazine derivative-modified glassy carbon electrode for NADH electrocatalytic oxidation. Electrochim Acta 54:3124–3128

    CAS  Google Scholar 

  • Golabi SM, Zare HR, Hamzehloo M (2002) Electrochemistry and electrocatalytic activity of pyrocatechol violet (PCV) film on a glassy carbon electrode towards the oxidation of reduced nicotinamide adenine dinucleotide (NADH). Electroanal 14:611–618

    CAS  Google Scholar 

  • Gorton L (1986) Chemically modified electrodes for the electrocatalytic oxidation of nicotinamide coenzymes. J Chem Soc Faraday Trans 1(82):1245–1258

    Google Scholar 

  • Gorton L, Domínguez E (2002) Electrocatalytic oxidation of NAD(P)H at mediator-modified electrodes. Rev Mol Biotechnol 82:371–392

    CAS  Google Scholar 

  • Gründig B, Wittstock G, Rüdel U, Strehlitz B (1995) Mediator-modified electrodes for electrocatalytic oxidation of NADH. J Electroanal Chem 395:143–157

    Google Scholar 

  • Hilt G, Steckhan E (1993) Transition metal complexes of 1,10-phenanthroline-5,6-dione as efficient mediators for the regeneration of NAD+ in enzymatic synthesis. J Chem Soc Chem Comm 1706–1707

  • Hilt G, Lewall B, Montero G, Utley JHP, Steckhan E (1997) Efficient in-situ redox catalytic NAD(P)+ regeneration in enzymatic synthesis using transition-metal complexes of 1,10-phenanthroline-5,6-dione and its N-monomethylated derivative as catalysts. Liebigs Ann 1997:2289–2296

    Google Scholar 

  • Hollmann F, Schmid A (2004) Electrochemical regeneration of oxidoreductases for cell-free biocatalytic redox reactions. Biocatal Biotransform 22:63–88

    CAS  Google Scholar 

  • Hollmann F, Hofstetter K, Schmid A (2006) Non-enzymatic regeneration of nicotinamide and flavin cofactors for monooxygenase catalysis. Trends Biotechnol 24:163–171

    CAS  Google Scholar 

  • Huang M, Jiang H, Zhai J, Liu B, Dong S (2007) A simple route to incorporate redox mediator into carbon nanotubes/Nafion composite film and its application to determine NADH at low potential. Talanta 74:132–139

    CAS  Google Scholar 

  • Jaegfeldt H, Torstensson ABC, Gorton LGO, Johansson G (1981) Catalytic oxidation of reduced nicotinamide adenine dinucleotide by graphite electrodes modified with adsorbed aromatics containing catechol functionalities. Anal Chem 53:1979–1982

    CAS  Google Scholar 

  • Ju H, Xiao Y, Lu X, Chen H (2002) Electrooxidative coupling of a toluidine blue O terminated self-assembled monolayer studied by electrochemistry and surface enhanced Raman spectroscopy. J Electroanal Chem 518:123–130

    CAS  Google Scholar 

  • Karnicka K, Miecznikowski K, Kowalewska B, Skunik M, Opallo M, Rogalski J, Schuhmann W, Kulesza PJ (2008) ABTS-modified multiwalled carbon nanotubes as an effective mediating system for bioelectrocatalytic reduction of oxygen. Anal Chem 80:7643–7648

    CAS  Google Scholar 

  • Karyakin AA, Karyakina EE, Schuhmann W, Schmidt H-L, Varfolomeyev SD (1994) New amperometric dehydrogenase electrodes based on electrocatalytic NADH-oxidation at poly (methylene blue)-modified electrodes. Electroanal 6:821–829

    CAS  Google Scholar 

  • Katakis I, Domínguez E (1997) Catalytic electrooxidation of NADH for dehydrogenase amperometric biosensors. Microchim Acta 126:11–32

    CAS  Google Scholar 

  • Kroutil W, Mang H, Edegger K, Faber K (2004a) Biocatalytic oxidation of primary and secondary alcohols. ChemInform 35:125–142

    Google Scholar 

  • Kroutil W, Mang H, Edegger K, Faber K (2004b) Recent advances in the biocatalytic reduction of ketones and oxidation of sec-alcohols. Curr Opin Chem Biol 8:120–126

    CAS  Google Scholar 

  • Kubota LT, Munteanu F, Roddick-Lanzilotta A, McQuillan AJ, Gorton L (2000) Electrochemical investigation of some aromatic redox mediators immobilised on titanium phosphate. Quim Anal 19:15–27

    CAS  Google Scholar 

  • Kumar AS, Chen SM (2008) Electroanalysis of NADH using conducting and redox active polymer/carbon nanotubes modified electrodes—a review. Sensors 8:739–766

    CAS  Google Scholar 

  • Ladiu CI, Garcia JR, Popescu IC, Gorton L (2007) NADH electrocatalytic oxidation at glassy carbon paste electrodes modified with Meldola blue adsorbed on alpha-titanium phosphate. Rev Roum Chim 52:67–74

    CAS  Google Scholar 

  • Lavandera I, Kern A, Resch V, Ferreira-Silva B, Glieder A, Fabian WM, de Wildeman S, Kroutil W (2008) One-way biohydrogen transfer for oxidation of sec-alcohols. Org Lett 10:2155–2158

    CAS  Google Scholar 

  • Li Y, Shi L, Ma W, Li D-W, Kraatz H-B, Long Y-T (2011) 6-Vinyl coenzyme Q0: electropolymerization and electrocatalysis of NADH oxidation exploiting poly-p-quinone-modified electrode surfaces. Bioelectrochemistry 80:128–131

    CAS  Google Scholar 

  • Liese A, Karutz M, Kamphuis J, Wandrey C, Kragl U (1996) Enzymatic resolution of 1-phenyl-1,2-ethanediol by enantioselective oxidation: overcoming product inhibition by continuous extraction. Biotechnol Bioeng 51:544–550

    CAS  Google Scholar 

  • Liu H, Ying T, Sun K, Li H, Qi D (1997) Reagentless amperometric biosensors highly sensitive to hydrogen peroxide, glucose and lactose based on N-methyl phenazine methosulfate incorporated in a Nafion film as an electron transfer mediator between horseradish peroxidase and an electrode. Anal Chim Acta 344:187–199

    CAS  Google Scholar 

  • Lobo MJ, Miranda AJ, López-Fonseca JM, Tuñón P (1996) Electrocatalytic detection of nicotinamide coenzymes by poly(o-aminophenol)- and poly(o-phenylenediamine)-modified carbon paste electrodes. Anal Chim Acta 325:33–42

    CAS  Google Scholar 

  • Lobo MJ, Miranda AJ, Tuñón P (1997) Amperometric biosensors based on NAD(P)-dependent dehydrogenase enzymes. Electroanal 9:191–202

    CAS  Google Scholar 

  • Lorenzo E, Sánchez L, Pariente F, Tirado J, Abruña HD (1995) Thermodynamics and kinetics of adsorption and electrocatalysis of NADH oxidation with a self-assembling quinone derivative. Anal Chim Acta 309:79–88

    CAS  Google Scholar 

  • Lu B, Bai J, Bo X, Yang L, Guo L (2010) Electrosynthesis and efficient electrocatalytic performance of poly(neutral red)/ordered mesoporous carbon composite. Electrochim Acta 55:4647–4652

    CAS  Google Scholar 

  • Malinauskas A, Ruzgas T, Gorton L (2000) Electrochemical study of the redox dyes Nile Blue and Toluidine Blue adsorbed on graphite and zirconium phosphate modified graphite. J Electroanal Chem 484:55–63

    CAS  Google Scholar 

  • Mano N, Kuhn A (1999a) Ca2+ enhanced electrocatalytic oxidation of NADH by immobilized nitro-fluorenones. Electrochem Commun 1:497–501

    CAS  Google Scholar 

  • Mano N, Kuhn A (1999b) Immobilized nitro-fluorenone derivatives as electrocatalysts for NADH oxidation. J Electroanal Chem 477:79–88

    CAS  Google Scholar 

  • Mano N, Thienpont A, Kuhn A (2001) Adsorption and catalytic activity of trinitro-fluorenone derivatives towards NADH oxidation on different electrode materials. Electrochem Commun 3:585–589

    CAS  Google Scholar 

  • Manu B, Chaudhari S (2002) Anaerobic decolorisation of simulated textile wastewater containing azo dyes. Bioresour Technol 82:225–231

    CAS  Google Scholar 

  • Mariotti MP, CdS R, Fertonani FL, Yamanaka H (2006) Strategies for developing NADH detector based on meldola blue in different immobilization methods: a comparative study. J Braz Chem Soc 17:689–696

    CAS  Google Scholar 

  • Mertens R, Greiner L, van den Ban ECD, Haaker HBCM, Liese A (2003) Practical applications of hydrogenase I from Pyrococcus furiosus for NADPH generation and regeneration. J Mol Catal 24–25:39–52

    Google Scholar 

  • Milczarek G (2009) Lignosulfonate-modified electrodes: electrochemical properties and electrocatalysis of NADH oxidation. Langmuir 25:10345–10353

    CAS  Google Scholar 

  • Moiroux J, Elving PJ (1980) Mechanistic aspects of the electrochemical oxidation of dihydronicotinamide adenine dinucleotide (NADH). J Am Chem Soc 102:6533–6538

    CAS  Google Scholar 

  • Munteanu FD, Kubota LT, Gorton L (2001) Effect of pH on the catalytic electrooxidation of NADH using different two-electron mediators immobilised on zirconium phosphate. J Electroanal Chem 509:2–10

    CAS  Google Scholar 

  • Munteanu FD, Mano N, Kuhn A, Gorton L (2002) Mediator-modified electrodes for catalytic NADH oxidation: high rate constants at interesting overpotentials. Bioelectrochemistry 56:67–72

    CAS  Google Scholar 

  • Murthy ASN, Anita NO, Anita, Gupta RL (1994) NADH sensor with electrochemically modified TCNQ electrode. Anal Chim Acta 289:43–46

    CAS  Google Scholar 

  • Nassef HM, Radi A-E, O’Sullivan CK (2006) Electrocatalytic sensing of NADH on a glassy carbon electrode modified with electrografted o-aminophenol film. Electrochem Commun 8:1719–1725

    CAS  Google Scholar 

  • Ni F, Feng H, Gorton L, Cotton TM (1990) Electrochemical and SERS studies of chemically modified electrodes: Nile Blue A, a mediator for NADH oxidation. Langmuir 6:66–73

    CAS  Google Scholar 

  • Nogala W, Rozniecka E, Zawisza I, Rogalski J, Opallo M (2006) Immobilization of ABTS–laccase system in silicate based electrode for biolectrocatalytic reduction of dioxygen. Electrochem Commun 8:1850–1854

    CAS  Google Scholar 

  • Novotný C, Svobodová K, Benada O, Kofronová O, Heissenberger A, Fuchs W (2011) Potential of combined fungal and bacterial treatment for color removal in textile wastewater. Bioresour Technol 102:879–888

    Google Scholar 

  • Obón JM, Casanova P, Manjón A, Fernández VM, Iborra JL (1997) Stabilization of glucose dehydrogenase with polyethyleneimine in an electrochemical reactor with NAD(P)+ regeneration. Biotechnol Progr 13:557–561

    Google Scholar 

  • Ohtani M, Kuwabata S, Yoneyama H (1997) Electrochemical oxidation of reduced nicotinamide coenzymes at Au electrodes modified with phenothiazine derivative monolayers. J Electroanal Chem 422:45–54

    CAS  Google Scholar 

  • Pariente F, Tobalina F, Darder M, Lorenzo E, Abruna HD (1996) Electrodeposition of redox-active films of dihydroxybenzaldehydes and related analogues and their electrocatalytic activity towards NADH oxidation. Anal Chem 68:3135–3142

    CAS  Google Scholar 

  • Pauliukaite R, Selskiene A, Malinauskas A, Brett CMA (2009) Electrosynthesis and characterisation of poly(safranine T) electroactive polymer films. Thin Solid Films 517:5435–5441

    CAS  Google Scholar 

  • Persson B, Gorton L (1990) A comparative study of some 3,7-diaminophenoxazine derivatives and related compounds for electrocatalytic oxidation of NADH. J Electroanal Chem 292:115–138

    CAS  Google Scholar 

  • Prieto-Simón B, Fàbregas E (2004) Comparative study of electron mediators used in the electrochemical oxidation of NADH. Biosens Bioelectron 19:1131–1138

    Google Scholar 

  • Prieto-Simón B, Macanás J, Muñoz M, Fàbregas E (2007) Evaluation of different mediator-modified screen-printed electrodes used in a flow system as amperometric sensors for NADH. Talanta 71:2102–2107

    Google Scholar 

  • Qi-Jin C, Shao-Jun D (1996) A comparison of electrocatalytic ability of various mediators adsorbed onto paraffin impregnated graphite electrodes for oxidation of reduced nicotinamide coenzymes. J Mol Catal A Chem 105:193–201

    Google Scholar 

  • Radoi A, Compagnone D (2009) Recent advances in NADH electrochemical sensing design. Bioelectrochemistry 76:126–134

    CAS  Google Scholar 

  • Ramirez Molina C, Boujtita M, El Murr N (1999) A carbon paste electrode modified by entrapped toluidine blue-O for amperometric determination of l-lactate. Anal Chim Acta 401:155–162

    CAS  Google Scholar 

  • Retna Raj C, Ohsaka T (2001) Facilitated electrochemical oxidation of NADH and its model compound at gold electrode modified with terminally substituted electroinactive self-assembled monolayers. Bioelectrochemistry 53:251–256

    CAS  Google Scholar 

  • Riebel BR, Gibbs PR, Wellborn WB, Bommarius AS (2002) Cofactor regeneration of NAD+ from NADH: novel water-forming NADH oxidases. Adv Synth Catal 344:1156–1168

    CAS  Google Scholar 

  • Riebel BR, Gibbs PR, Wellborn WB, Bommarius AS (2003) Cofactor regeneration of both NAD+ from NADH and NADP+ from NADPH:NADH oxidase from Lactobacillus sanfranciscensis. Adv Synth Catal 345:707–712

    CAS  Google Scholar 

  • Rivera N, Colón Y, Guadalupe AR (1994) Ruthenium complexes as redox mediators for malate and lactate dehydrogenases. Bioelectrochem Bioenerg 34:169–175

    CAS  Google Scholar 

  • Saiful Azhar S, Ghaniey Liew A, Suhardy D, Farizul Hafiz K, Irfan Hatim MD (2005) Dye removal from aqueous solution by using adsorption on treated sugarcane bagasse. Am J App Sci 2:1499–1503

    Google Scholar 

  • Saleh FS, Rahman MR, Kitamura F, Okajima T, Mao L, Ohsaka T (2011a) A simple and effective way to integrate Nile blue covalently onto functionalized SWCNTs modified GC electrodes for sensitive and selective electroanalysis of NADH. Electroanalysis 23:409–416

    CAS  Google Scholar 

  • Saleh FS, Rahman MR, Okajima T, Mao L, Ohsaka T (2011b) Determination of formal potential of NADH/NAD+ redox couple and catalytic oxidation of NADH using poly(phenosafranin)-modified carbon electrodes. Bioelectrochemistry 80:121–127

    CAS  Google Scholar 

  • Santhiago M, Lima PR, WdJR S, Oliveira ABd, Kubota LT (2009) In situ activated 3,5-dinitrobenzoic acid covalent attached to nanostructured platform for NADH electrooxidation. Electrochim Acta 54:6609–6616

    CAS  Google Scholar 

  • Santiago MEB, Vélez MM, Borrero S, Díaz A, Casillas CA, Hofmann C, Guadalupe AR, Colón JL (2006) NADH electrooxidation using bis(1,10-phenanthroline-5,6-dione)(2,2′-bipyridine)ruthenium(II)-exchanged zirconium phosphate modified carbon paste electrodes. Electroanalysis 18:559–572

    CAS  Google Scholar 

  • Santos AdS, Gorton L, Kubota LT (2002a) Nile blue adsorbed onto silica gel modified with niobium oxide for electrocatalytic oxidation of NADH. Electrochim Acta 47:3351–3360

    CAS  Google Scholar 

  • Santos AS, Gorton L, Kubota LT (2002b) Electrocatalytic NADH oxidation using an electrode based on Meldola blue immobilized on silica coated with niobium oxide. Electroanalysis 14:805–812

    CAS  Google Scholar 

  • Santos AS, Freire RS, Kubota LT (2003) Highly stable amperometric biosensor for ethanol based on Meldola’s blue adsorbed on silica gel modified with niobium oxide. J Electroanal Chem 547:135–142

    CAS  Google Scholar 

  • Schlereth DD, Katz E, Schmidt H-L (1994) Toluidine blue covalently immobilized onto gold electrode surfaces: an electrocatalytic system for nadh oxidation. Electroanalysis 6:725–734

    CAS  Google Scholar 

  • Schumacher J, Eckstein M, Kragl U (2006) Influence of water-miscible organic solvents on kinetics and enantioselectivity of the (R,-specific alcohol dehydrogenase from Lactobacillus brevis. Biotechnol J 1:574–581

    CAS  Google Scholar 

  • Seelbach K, Riebel B, Hummel W, Kula M-R, Tishkov VI, Egorov AM, Wandrey C, Kragl U (1996) A novel, efficient regenerating method of NADPH using a new formate dehydrogenase. Tetrahedron Lett 37:1377–1380

    CAS  Google Scholar 

  • Siao H-W, Chen S-M, Lin K-C (2011) Electrochemical study of PEDOT-PSS-MDB-modified electrode and its electrocatalytic sensing of hydrogen peroxide. J Solid State Electrochem 15:1121–1128

    CAS  Google Scholar 

  • Stampfer W, Kosjek B, Faber K, Kroutil W (2002) Biocatalytic asymmetric hydrogen transfer employing Rhodococcus ruber DSM 44541. J Org Chem 68:402–406

    Google Scholar 

  • Surya A, Murthy N, Anita (1994) Tetracyanoquinodimethane (TCNQ) modified electrode for NADH oxidation. Bioelectrochem Bioenerg 33:71–73

    Google Scholar 

  • Toh C-S, Bartlett PN, Mano N, Aussenac F, Kuhn A, Dufourc EJ (2003) The effect of calcium ions on the electrocatalytic oxidation of NADH by poly(aniline)-poly(vinylsulfonate) and poly(aniline)-poly(styrenesulfonate) modified electrodes. Phys Chem Chem Phys 5:588–593

    CAS  Google Scholar 

  • Tse DC-S, Kuwana T (1978) Electrocatalysis of dihydronicotinamide adenosine diphosphate with quinones and modified quinone electrodes. Anal Chem 50:1315–1318

    CAS  Google Scholar 

  • van der Donk WA, Zhao H (2003) Recent developments in pyridine nucleotide regeneration. Curr Opin Chem Biol 14:421–426

    Google Scholar 

  • Vasilescu A, Noguer T, Andreescu S, Calas-Blanchard C, Bala C, Marty J-L (2003) Strategies for developing NADH detectors based on Meldola Blue and screen-printed electrodes: a comparative study. Talanta 59:751–765

    CAS  Google Scholar 

  • Wichmann R, Vasic-Racki D (2005) Cofactor regeneration at the lab scale. In: Kragl U (ed) Technology transfer in biotechnology. Springer, Berlin, pp 225–260

    Google Scholar 

  • Zare HR, Golabi SM (1999) Electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide (NADH) at a chlorogenic acid modified glassy carbon electrode. J Electroanal Chem 464:14–23

    CAS  Google Scholar 

  • Zhao H, van der Donk WA (2003) Regeneration of cofactors for use in biocatalysis. Curr Opin Chem Biol 14:583–589

    CAS  Google Scholar 

  • Zhou DM, Fang HQ, Chen H-Y, Ju HX, Wang Y (1996) The electrochemical polymerization of methylene green and its electrocatalysis for the oxidation of NADH. Anal Chim Acta 329:41–48

    CAS  Google Scholar 

  • Zhou D-m, Sun J-J, H-y C, H-q F (1998) Electrochemical polymerization of toluidine blue and its application for the amperometric determination of [beta]-d-glucose. Electrochim Acta 43:1803–1809

    CAS  Google Scholar 

  • Zhu L, Yang R, Jiang X, Yang D (2009) Amperometric determination of NADH at a Nile blue/ordered mesoporous carbon composite electrode. Electrochem Commun 11:530–533

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the German Federal Environmental Foundation (DBU—Deutsche Bundesstiftung Umwelt), grant number: 13253.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Holtmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kochius, S., Magnusson, A.O., Hollmann, F. et al. Immobilized redox mediators for electrochemical NAD(P)+ regeneration. Appl Microbiol Biotechnol 93, 2251–2264 (2012). https://doi.org/10.1007/s00253-012-3900-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-3900-z

Keywords

Navigation