Skip to main content
Log in

Physiology, biochemistry and possible applications of microbial caffeine degradation

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Caffeine, a purine alkaloid is a constituent of widely consumed beverages. The scientific evidence which has proved the harm of this alkaloid has paved the way for innumerable research in the area of caffeine degradation. In addition to this, the fact that the by-products of the coffee and tea industry pollute the environment has called for the need of decaffeinating coffee and tea industry’s by-products. Though physical and chemical methods for decaffeination are available, the lack of specificity for removal of caffeine in these techniques and their non-eco-friendly nature has opened the area of microbial and enzymatic degradation of caffeine. Another important application of microbial caffeine degradation apart from its advantages like specificity, eco-friendliness and cost-effectiveness is the fact that this process will enable the production of industrially and medically useful components of the caffeine degradation pathway like theobromine and theophylline. This is a comprehensive review which mainly focuses on caffeine degradation, large-scale degradation of the same and its applications in the industrial world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Asano KYT, Yamada H (1994) Enzymes involved in theobromine production from caffeine by a Pseudomonas putida no. 352. Biosci Biotechnol Biochem 58:2303–2304

    Article  CAS  Google Scholar 

  • Asano Y, Komeda T, Yamada H (1993) Microbial production of theobromine from caffeine. Biosci Biotechnol Biochem 57:1286–1289

    Article  CAS  Google Scholar 

  • Assinder SJ, Williams PA (1990) The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Adv Microb Physiol 31:1–69

    Article  CAS  Google Scholar 

  • Bagshaw SM, Ghali WA (2005) Theophylline for prevention of contrast-induced nephropathy—a systematic review and meta-analysis. Arch Intern Med 165:1087–1093

    Article  Google Scholar 

  • Banerjee SK, Chatterjee SN (1981) Radiomimetic property of furazolidone and caffeine enhancement of its lethal action on the vibrios. Chem Biol Interact 37:321–335

    Article  CAS  Google Scholar 

  • Beltrán JG, Leask RL, Brown WA (2006) Activity and stability of caffeine demethylases found in Pseudomonas putida IF-3. Biochem Eng J 31:8–13

    Article  Google Scholar 

  • Bhavya B, Gummadi SN (2011) Enhanced degradation of caffeine and caffeine demethylase production by Pseudomonas sp. in bioreactors under fed-batch mode. Appl Microbiol Biotechnol 91:1007–1017

    Article  Google Scholar 

  • Blecher R, Lingens F (1977) Metabolism of caffeine by Pseudomonas putida. Hoppe- Seyler’s Zeitschrift fur Physiologische Chemie 358:807–817

    Article  CAS  Google Scholar 

  • Brand D, Pandey A, Leon JR, Roussos S, Soccol CR (2000) Biological detoxification of coffee husk by filamentous fungi using a solid state fermentation system. Enzyme Microb Technol 26:127–133

    Article  Google Scholar 

  • Brand D, Pandey A, Leon JR, Roussos S, Soccol CR (2001) Packed bed column fermenter and kinetic modelling for upgrading the nutritional quality of coffee husk in solid state fermentation. Biotechnol Progr 17:1065–1070

    Article  CAS  Google Scholar 

  • Brand D, Pandey A, Leon JR, Brand I, Soccol CR (2002) Relation between coffee husk caffeine degradation and respiration of Aspergillus niger in solid state fermentation. Appl Biochem Biotechnol 102:168–178

    Article  Google Scholar 

  • Chakrabarty AM (1972) Genetic basis of the biodegradation of salicylate in Pseudomonas. J Bacteriol 112:815–823

    CAS  Google Scholar 

  • Chakrabarty AM, Chou G, Gunsalus IC (1973) Genetic regulation of octane dissimilation plasmid in Pseudomonas Proceedings of the National Academy of Sciences. USA 70:1137–1140

    Article  CAS  Google Scholar 

  • Charles BO, Rawal BD (1979) The combined action of methyxanthines with erythromycin, chloramphenicol and tetracycline on Staph aureus. Microbiol Lett 10:143–147

    CAS  Google Scholar 

  • Cyr MC, Beauchesne MF, Lemière C, Blais L (2008) Effect of theophylline on the rate of moderate to severe exacerbations among patients with chronic obstructive pulmonary disease. Brit J Clin Pharmacol 65:40–50

    Article  CAS  Google Scholar 

  • Dash SS, Gummadi SN (2006) Biodegradation of caffeine by Pseudomonas sp. NCIM 5235. Res J Microbiol 1:115–123

    Article  CAS  Google Scholar 

  • Dash SS, Gummadi SN (2007) Enhanced biodegradation of caffeine by Pseudomonas sp. using response surface methodology. Biochem Eng J 36:288–293

    Article  CAS  Google Scholar 

  • Dash SS, Gummadi SN (2008) Inhibitory effect of caffeine on growth of various bacterial strains. Res J Microbiol 3:457–465

    Article  CAS  Google Scholar 

  • Dash SS, Sailaja NS, Gummadi SN (2008) Chemotaxis of Pseudomonas sp. to caffeine and related methylxanthines. J Basic Microbiol 48:130–134

    Article  Google Scholar 

  • Dunn NW, Gunsalus IC (1973) Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. J Bacteriol 114:974–979

    CAS  Google Scholar 

  • Eteng MU, Eyong EU, Akpanyung EO, Aremu CY (1997) Recent advances in caffeine and theobromine toxicities: a review. Plant Foods Hum Nutr 51:231–243

    Article  CAS  Google Scholar 

  • Gibson AM, Morgan RM, Nikitin AG (2009) The effect of caffeine on the bacterial populations in a freshwater aquarium system. Student Summer Scholars. Paper 31. http://scholarworks.gvsu.edu/sss/31

  • Gluck M, Lingens F (1988) Heteroxanthinedemethylase, a new enzyme in the degradation of caffeine by Pseudomonas putida. Appl Microb Biotechnol 28:59–62

    Article  Google Scholar 

  • Gokulakrishnan S, Chandraraj K, Gummadi SN (2005) Microbial and enzymatic methods for the removal of caffeine. Enz Microb Technol 37:225–232

    Article  CAS  Google Scholar 

  • Gokulakrishnan S, Chandraraj K, Gummadi SN (2007) A preliminary study of caffeine degradation by Pseudomonas sp. GSC 1182. Int J Food Microbiol 113:346–350

    Article  CAS  Google Scholar 

  • Gummadi SN, Devarai S (2010) Kinetics of growth and caffeine demethylase production of Pseudomonas sp. in bioreactor. J Ind Microbiol Biotechnol 37:901–908

    Article  CAS  Google Scholar 

  • Gummadi SN, Dash SS, Devarai S (2009a) Optimization of production of caffeine demethylase by Pseudomonas sp. in a bioreactor. J Ind Microbiol Biotechnol 36:713–720

    Article  CAS  Google Scholar 

  • Gummadi SN, Ganesh KB, Devarai S (2009b) Enhanced degradation of caffeine by immobilized cells of Pseudomonas sp. in agar–agar matrix using statistical approach. Biochem Eng J 44:136–141

    Article  CAS  Google Scholar 

  • Hakil M, Denis S, Viniegra-González G, Augur C (1998) Degradation and product analysis of caffeine and related dimethylxanthines by filamentous fungi. Enz Microb Technol 22:355–359

    Article  CAS  Google Scholar 

  • Hakil M, Voisinet F, Gonzalez GV, Augur C (1999) Caffeine degradation in solid state fermentation by Aspergillus tamarii: effects of additional nitrogen sources. Process Biochem 35:103–109

    Article  CAS  Google Scholar 

  • Harm W (1967) Differential effects of acriflavin and caffeine on various ultraviolet-irradiated Escherichia coli strains and T1 phage. Mutat Res 4:93

    Article  CAS  Google Scholar 

  • Hohnloser W, Osswalt B, Lingens F (1980) Enzymological aspects of caffeine demethylation and formaldehyde oxidation by Pseudomonas putida C1. Hoppe seyler's Z Physiol Chemist 361:1763–1766

    Article  CAS  Google Scholar 

  • Khilman BA (1974) Effects of caffeine on the genetic material. Mutat Res 26:53–71

    Article  Google Scholar 

  • Kurtzman RH, Schwimmer S (1971) Caffeine removal from growth media by microorganisms. Experimencia 127:481–482

    Article  Google Scholar 

  • Leifa F, Pandey A, Soccol CR (2000a) Use of various coffee industry residues for the production of Pleurotus ostreatus in solid state fermentation. Acta Biotechnol 20:41–52

    Article  Google Scholar 

  • Leifa F, Pandey A, Raimbault M, Soccol CR, Mohan R (2000b) Production of edible mushroom Lentinus edodes on the coffee spent ground, in: Proceedings of the Third International Seminar on Biotechnology in the Coffee Agroindustry. Iapar/IRD, Londrina-PR, Brazil, pp 377–380

    Google Scholar 

  • Leifa F, Pandey A, Soccol CR (2001) Flammulina velutipes on coffee husk and coffee spent-ground. Braz Arch Biol Technol 44:205–212

    Article  CAS  Google Scholar 

  • Lorist MM, Tops M (2003) Caffeine, fatigue, and cognition. Brain Cogn 53:82–94

    Article  Google Scholar 

  • Machado CMM, Oliveira BH, Pandey A, Soccol CR (2000) Coffee husk as substrate for the production of gibberelic acid by fermentation, in: coffee biotechnology and quality. Kluwer Academic, Dordrecht, pp 401–408

    Google Scholar 

  • Machado CMM, Soccol CR, Oliveira BH, Pandey A (2002) Gibberellic acid production by solid-state fermentation in coffee husk. Appl Biochem Biotechnol 102:179–192

    Article  Google Scholar 

  • Madhyastha KM, Sridhar GR (1998) A novel pathway for the metabolism of caffeine by a mixed culture consortium. Biochem Biophys Res Co 249:178–181

    Article  Google Scholar 

  • Madyastha KM, Sridhar GR, Vadiraja BB, Sudha Madhavi Y (1999) Purification and partial characterization of caffeine oxidase—a novel enzyme from a mixed culture consortium. Biochem Biophys Res Commun 263:460–464

    Article  CAS  Google Scholar 

  • Mazzafera P (2002) Degradation of caffeine by microorganisms and potential use of decaffeinated coffee husk and pulp in animal feeding. Sci Agric 59:815–821

    Article  CAS  Google Scholar 

  • Mazzafera P, Olsson O, Sandberg G (1994) Degradation of caffeine and related methyl xanthines by Serratia marcescens isolated from soil under coffee cultivation. Microb Ecol 31:199–207

    Google Scholar 

  • Mazzafera P, Olsson O, Sandberg G (1996) Degradation of caffeine and related methyl xanthines by Serratia marcescens isolated from soil under coffee cultivation. Microb Ecol 31:199–207

    Article  CAS  Google Scholar 

  • Middelhoven WJ, Bakker CM (1982) Degradation of caffeine by immobilized cells of Pseudomonas putida strain C 3024. European J Appl Microbiol Biotechnol 15:214–217

    Article  CAS  Google Scholar 

  • Mohapatra BR, Harris N, Nordin R, Mazumdar A (2006) Purification and characterization of a novel caffeine oxidase from Alcaligenes species. J Biotechnol 125:319–327

    Article  CAS  Google Scholar 

  • Murthy PS, Manonmani HK (2008) Bioconversion of coffee industry wastes with white rot fungus Pleurotus florida. Res J Environ Sci 2:145–150

    Article  CAS  Google Scholar 

  • Odafe Sideso FP, Marvier AC, Katerelos NA, Goodenough PW (2001) The characteristics and stabilization of a caffeine demethylase enzyme complex. Int J Food Sci Technol 36:693–698

    Article  Google Scholar 

  • Ogunseitan OA (1996) Removal of caffeine in sewage by Pseudomonas putida: implications for water pollution index. World J Microbiol Biotechnol 12:251–256

    Article  CAS  Google Scholar 

  • Orozco AL, Pérez MI, Guevara O, Rodríguez J, Hernández M, González-Vila FJ, Polvillo O, Arias ME (2008) Biotechnological enhancement of coffee pulp residues by solid-state fermentation with Streptomyces. Py–GC/MS analysis. J Anal Appl Pyrolysis 81:247–252

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Brand D, Mohan R, Roussos S (2000) Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochem Eng J 6:153–162

    Article  CAS  Google Scholar 

  • Putrament A, Baranowska H, Bilinski T, Prazmo W (1972) On the specificity of caffeine effects. Mol Gen Genet 118:373–379

    Article  CAS  Google Scholar 

  • Ramanaviciene A, Mostovojus V, Bachmotova I, Ramanavicius A (2003) Anti-bacterial effect of caffeine on Escherichia coli and Pseudomonas fluorescens. Acta Medica Lituanica 10:185–188

    Google Scholar 

  • Ramarethinam S, Rajalakshmi N (2004) Caffeine in tea plants [Camellia sinensis (L.) O. Kuntze]: in situ lowering by Bacillus licheniformis. Indian J Exp Biol 42:575–580

    CAS  Google Scholar 

  • Rheinwald JG, Chakrabarty AM, Gunsalus IC (1973) A transmissible plasmid controlling camphor oxidation in Pseudomonas putida. Proc Nat Acad Sci USA 70:885–889

    Article  CAS  Google Scholar 

  • Rojas JBU, Verreth JAJ, Amato S, Huisman ES (2003) Biological treatments affect the chemical composition of coffee pulp. Bioresour Technol 89:267–274

    Article  Google Scholar 

  • Roussos S, Hannibal L, Aquiahuatl MA, Hernandes MRT, Marakis S (1994) Caffeine degradation by Penicillium verrucosum in solid state fermentation of coffee pulp: critical effects of additional inorganic and organic nitrogen sources. J Food Sci Technol 31:316–319

    CAS  Google Scholar 

  • Roussos S, Angeles AM, Refugio Trejo-Hernández M, Gaime Perraud I, Favela E, Ramakrishna M, Raimbault M, Viniegra-González G (1995) Biotechnological management of coffee pulp—isolation, screening, characterization, selection of caffeine-degrading fungi and natural microflora present in coffee pulp and husk. Appl Microbiol Biotechnol 42:756–762

    Article  CAS  Google Scholar 

  • Sandlie I, Solberg K, Kleppe K (1980) The effect of caffeine on cell growth and metabolism of thymidine in Escherichia coli. Mutat Res 73:29–41

    Article  CAS  Google Scholar 

  • Sarath Babu VR, Patra S, Thakur MS, Karanth NG, Varadaraj MC (2005) Degradation of caffeine by Pseudomonas alcaligenes CFR 1708. Enz Microb Technol 37:617–624

    Article  Google Scholar 

  • Schwimmer S, Khurtzman RH Jr, Heftmann E (1971) Caffeine metabolism by Penicillium roqueforti. Arch Biochem Biophys 147:109–113

    Article  CAS  Google Scholar 

  • Serafin WE (1995) Methylxanthines: the pharmacological basis of therapeutics. McGraw-Hill, New-York

    Google Scholar 

  • Shankaranand VS, Lonsane BK (1994) Coffee husk: an inexpensive substrate for production of citric acid by Aspergiilus niger in a solid-state fermentation system. World J Microbiol Biotechnol 10:165–168

    Article  CAS  Google Scholar 

  • Smit HJ, Gaffan EA, Rogers PJ (2004) Methylxanthines are the psycho-pharmacologically active constituents of chocolate. Psychopharmacol 176:412–419

    Article  CAS  Google Scholar 

  • Smith A (2002) Effects of caffeine on human behavior. Food Chem Toxicol 40:1243–1255

    Article  CAS  Google Scholar 

  • Soccol CR, Machado CMM, Oliveira BH (2000) Produção de ácido giberélico por fermentação no estado sólido em substrato misto (patente INPI-PR 00172)

  • Sundarraj CV, Dhala S (1965) Effect of naturally occurring xanthines on bacteria (I) antimicrobial action and potentiating effect on antibiotic spectra. Appl Microbiol 13:432–436

    Google Scholar 

  • Tagliari CV, Sanson RK, Zanette A, Franco TT, Soccol CR (2003) Caffeine degradation by Rhizopus delemar in packed bed column bioreactor using coffee husk as substrate. Braz J Microbio 34:102–104

    Article  Google Scholar 

  • Usmani OS, Belvisi MG, Patel HJ, Crispino N, Birrell MA, Korbonits M, Korbonits D, Barnes PJ (2005) Theobromine inhibits sensory nerve activation and cough. The FASEB J 19:231–233

    Google Scholar 

  • Walter P, Molina MR, Brenes RG, Bressani R (1984) Solid-state fermentation: an alternative to improve the nutritive value of coffee pulp. Appl Environ Microbiol 49:388–393

    Google Scholar 

  • White PA, Rasmussen JB (1998) The genotoxic hazards of domestic wastes in surface waters. Mutat Res 410:223–236

    Article  CAS  Google Scholar 

  • Williams PA, Murray K (1974) Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. J Bacteriol 120:416–423

    CAS  Google Scholar 

  • Wong CL, Dunn NW (1974) Transmissible plasmid coding for the degradation of benzoate and m-toluate in Pseudomonas arvilla mt-2. Genet Res 23:227–232

    Article  CAS  Google Scholar 

  • Woolfolk CA (1975) Metabolism of N-methylpurines by a Pseudomonas putida strain isolated by enrichment on caffeine as the sole source of carbon and nitrogen. J Bacteriol 123:1088–1106

    CAS  Google Scholar 

  • Worsey MJ, Williams PA (1975) Metabolism of toluene and the xylenes by Pseudomonas putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. J Bacteriol 124:7–13

    CAS  Google Scholar 

  • Yamaoka-Yano DM, Mazzafera P (1999) Catabolism of caffeine and purification of a xanthine oxidase responsible for methyluric acids production in Pseudomonas putida L. Rev Microbiol 30:62–70

    Article  CAS  Google Scholar 

  • Yu CL, Louie TM, Summers R, Kale Y, Gopishetty S, Subramanian M (2009) Two distinct pathways for metabolism of theophylline and caffeine are coexpressed in Pseudomonas putida CBB5. Am Soc Microbiol 14:4624–4632

    Google Scholar 

  • Zrenner R, Stitt M, Sonnewald U, Boldt R (2006) Pyrimidine and purine biosynthesis and degradation in plants. Annu Rev Plant Biol 57:805–836

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.N. Gummadi acknowledges Department of Science and Technology and Department of Biotechnology, Government of India, for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathyanarayana N. Gummadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gummadi, S.N., Bhavya, B. & Ashok, N. Physiology, biochemistry and possible applications of microbial caffeine degradation. Appl Microbiol Biotechnol 93, 545–554 (2012). https://doi.org/10.1007/s00253-011-3737-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3737-x

Keywords

Navigation