Skip to main content

Advertisement

Log in

Plasmid DNA fermentation strategies: influence on plasmid stability and cell physiology

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In order to provide sufficient pharmaceutical-grade plasmid DNA material, it is essential to gain a comprehensive knowledge of the bioprocesses involved; so, the development of protocols and techniques that allow a fast monitoring of process performance is a valuable tool for bioprocess design. Regarding plasmid DNA production, the metabolic stress of the host strain as well as plasmid stability have been identified as two of the key parameters that greatly influence plasmid DNA yields. The present work describes the impact of batch and fed-batch fermentations using different C/N ratios and different feeding profiles on cell physiology and plasmid stability, investigating the potential of these two monitoring techniques as valuable tools for bioprocess development and design. The results obtained in batch fermentations showed that plasmid copy number values suffered a pronounced increase at the end of almost all fermentation conditions tested. Regarding fed-batch fermentations, the strategies with exponential feeding profiles, in contrast with those with constant feeding, showed higher biomass and plasmid yields, the maximum values obtained for these two parameters being 95.64 OD600 and 344.3 mg plasmid DNA (pDNA)/L, respectively, when using an exponential feed rate of 0.2 h−1. Despite the results obtained, cell physiology and plasmid stability monitoring revealed that, although higher pDNA overall yields were obtained, this fermentation exhibited lower plasmid stability and percentage of viable cells. In conclusion, this study allowed clarifying the bioprocess performance based on cell physiology and plasmid stability assessment, allowing improvement of the overall process and not only plasmid DNA yield and cell growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abuzeid WM, Li D, O'Malley BW Jr (2011) Gene therapy for head and neck cancer. Adv Otorhinolaryngol 70:141–151

    Google Scholar 

  • Betts JI, Doig SD, Baganz F (2006) Characterization and application of a miniature 10 mL stirred-tank bioreactor, showing scale-down equivalence with a conventional 7 L reactor. Biotechnol Prog 22(3):681–688

    Article  CAS  Google Scholar 

  • Bohle K, Ross A (2011) Plasmid DNA production for pharmaceutical use: role of specific growth rate and impact on process design. Biotechnol Bioeng 108(9):2099–2106

    Article  CAS  Google Scholar 

  • Bower DM, Prather KL (2009) Engineering of bacterial strains and vectors for the production of plasmid DNA. Appl Microbiol Biotechnol 82(5):805–813

    Article  CAS  Google Scholar 

  • Carapuça E, Azzoni AR, Prazeres DM, Monteiro GA, Mergulhão FJ (2007) Time-course determination of plasmid content in eukaryotic and prokaryotic cells using real-time PCR. Mol Biotechnol 37(2):120–126

    Article  Google Scholar 

  • Carnes AE (2005) Fermentation design for the manufacture of therapeutic plasmid DNA. BioProcess Intl 3:36–44

    CAS  Google Scholar 

  • Carnes AE (2006) Fermentation process for continuous plasmid production (PCT/US60/764042). United States Patent and Trademark Office, Alexandria, VA, USA

  • Carnes AE, Hodgson CP, Williams JA (2006) Inducible Escherichia coli fermentation for increased plasmid DNA production. Biotechnol Appl Biochem 45(3):155–166

    Article  CAS  Google Scholar 

  • Carnes AE, Luke JM, Vincent JM, Schukar A, Anderson S, Hodgson CP, Williams JA (2011) Plasmid DNA fermentation strain and process-specific effects on vector yield, quality, and transgene expression. Biotechnol Bioeng 108(2):354–363

    Article  CAS  Google Scholar 

  • Chen W, Frazer PA (1996) Automated high-yield fermentation of plasmid DNA in Escherichia coli (US 5955323). United States Patent and Trademark Office, Alexandria, VA, USA

  • Chen W, Graham C, Ciccarelli RB (1997) Automated fed-batch fermentation with feed-back controls based on dissolved oxygen (DO) and pH for production of DNA vaccines. J Ind Microbiol Biotechnol 18(1):43–48

    Article  Google Scholar 

  • Danquah MK, Forde GM (2007) Growth medium selection and its economic impact on plasmid DNA production. J Biosci Bioeng 104(6):490–497

    Article  CAS  Google Scholar 

  • Danquah MK, Forde GM (2008) Development of a pilot-scale bacterial fermentation for plasmid-based biopharmaceutical production using a stoichiometric medium. Biotechnol Bioprocess Eng 13(2):158–167

    Article  CAS  Google Scholar 

  • Diogo MM, Queiroz JA, Prazeres DM (2003) Assessment of purity and quantification of plasmid DNA in process solutions using high-performance hydrophobic interaction chromatography. J Chromatogr A 998(1–2):109–117

    Article  CAS  Google Scholar 

  • Gahan ME, Webster DE, Wesselingh SL, Strugnell RA, Yang J (2009) Bacterial antigen expression is an important component in inducing an immune response to orally administered Salmonella-delivered DNA vaccines. PLoS One 4(6):e6062

    Article  Google Scholar 

  • Goyal D, Sahni G, Sahoo DK (2009) Enhanced production of recombinant streptokinase in Escherichia coli using fed-batch culture. Bioresour Technol 100(19):4468–4474

    Article  CAS  Google Scholar 

  • Heinemann JA, Cooper TF (2000) Post-segregational killing does not increase plasmid stability but acts to mediate the exclusion of competing plasmids. Proc Natl Acad Sci U S A 97(23):12643–12648

    Article  Google Scholar 

  • Hewitt CJ, Nebe-Von-Caron G (2001) An industrial application of multiparameter flow cytometry: assessment of cell physiological state and its application to the study of microbial fermentations. Cytometry 44(3):179–187

    Article  CAS  Google Scholar 

  • Hewitt CJ, Nebe-von Caron G, Nienow AW, McFarlane CM (1999) The use of multi-parameter flow cytometry to compare the physiological response of Escherichia coli W3110 to glucose limitation during batch, fed-batch and continuous culture cultivations. J Biotechnol 75(2–3):251–264

    Article  CAS  Google Scholar 

  • Hewitt CJ, Nebe-Von Caron G, Axelsson B, McFarlane CM, Nienow AW (2000) Studies related to the scale-up of high-cell-density E. coli fed-batch fermentations using multiparameter flow cytometry: effect of a changing microenvironment with respect to glucose and dissolved oxygen concentration. Biotechnol Bioeng 70(4):381–390

    Article  CAS  Google Scholar 

  • Johansson L, Liden G (2006) A study of long-term effects on plasmid-containing Escherichia coli in carbon-limited chemostat using 2D-fluorescence spectrofluorimetry. Biotechnol Prog 22(4):1132–1139

    Article  CAS  Google Scholar 

  • Jones KL, Kim SW, Keasling JD (2000) Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab Eng 2(4):328–338

    Article  CAS  Google Scholar 

  • Kawase Y, Ladage D, Hajjar RJ (2011) Rescuing the failing heart by targeted gene transfer. J Am Coll Cardiol 57(10):1169–1180

    Article  Google Scholar 

  • Kilonzo PM, Margaritis A, Bergougnou MA (2009) Plasmid stability and kinetics of continuous production of glucoamylase by recombinant Saccharomyces cerevisiae in an airlift bioreactor. J Ind Microbiol Biotechnol 36(9):1157–1169

    Article  CAS  Google Scholar 

  • Kim YH, Han KY, Lee K, Lee J (2005) Proteome response of Escherichia coli fed-batch culture to temperature downshift. Appl Microbiol Biotechnol 68(6):786–793

    Article  CAS  Google Scholar 

  • Listner K, Bentley L, Okonkowski J, Kistler C, Wnek R, Caparoni A, Junker B, Robinson D, Salmon P, Chartrain M (2006) Development of a highly productive and scalable plasmid DNA production platform. Biotechnol Prog 22(5):1335–1345

    Article  CAS  Google Scholar 

  • Mairhofer J, Cserjan-Puschmann M, Striedner G, Nobauer K, Razzazi-Fazeli E, Grabherr R (2010) Marker-free plasmids for gene therapeutic applications—lack of antibiotic resistance gene substantially improves the manufacturing process. J Biotechnol 146(3):130–137

    Article  CAS  Google Scholar 

  • O'Kennedy RD, Baldwin C, Keshavarz-Moore E (2000) Effects of growth medium selection on plasmid DNA production and initial processing steps. J Biotechnol 76(2–3):175–183

    Article  Google Scholar 

  • O'Kennedy RD, Ward JM, Keshavarz-Moore E (2003) Effects of fermentation strategy on the characteristics of plasmid DNA production. Biotechnol Appl Biochem 37(1):83–90

    Article  Google Scholar 

  • Okonkowski J, Kizer-Bentley L, Listner K, Robinson D, Chartrain M (2005) Development of a robust, versatile, and scalable inoculum train for the production of a DNA vaccine. Biotechnol Prog 21(4):1038–1047

    Article  CAS  Google Scholar 

  • Oliveira PH, Prather KJ, Prazeres DM, Monteiro GA (2009) Structural instability of plasmid biopharmaceuticals: challenges and implications. Trends Biotechnol 27(9):503–511

    Article  CAS  Google Scholar 

  • O'Mahony K, Freitag R, Hilbrig F, Müller P, Schumacher I (2007) Strategies for high titre plasmid DNA production in Escherichia coli DH5 alpha. Process Biochem 42(7):1039–1049

    Article  Google Scholar 

  • O'Neill MJ, Bourre L, Melgar S, O'Driscoll CM (2011) Intestinal delivery of non-viral gene therapeutics: physiological barriers and preclinical models. Drug Discov Today 16(5–6):203–218

    Article  Google Scholar 

  • Ow DSW, Nissom PM, Philp R, Oh SKW, Yap MGS (2006) Global transcriptional analysis of metabolic burden due to plasmid maintenance in Escherichia coli DH5 alpha during batch fermentation. Enzyme Microb Technol 39(3):391–398

    Article  CAS  Google Scholar 

  • Passarinha LA, Diogo MM, Queiroz JA, Monteiro GA, Fonseca LP, Prazeres DMF (2006) Production of ColE1 type plasmid by Escherichia coli DH5 alpha cultured under nonselective conditions. J Microbiol Biotechnol 16(1):20–24

    CAS  Google Scholar 

  • Passarinha LA, Bonifacio MJ, Queiroz JA (2009) Application of a fed-batch bioprocess for the heterologous production of hSCOMT in Escherichia coli. J Microbiol Biotechnol 19(9):972–981

    Article  CAS  Google Scholar 

  • Phue JN, Lee SJ, Trinh L, Shiloach J (2008) Modified Escherichia coli B (BL21), a superior producer of plasmid DNA compared with Escherichia coli K (DH5 alpha). Biotechnol Bioeng 101(4):831–836

    Article  CAS  Google Scholar 

  • Ricci JCD, Hernandez ME (2000) Plasmid effects on Escherichia coli metabolism. Crit Rev Biotechnol 20(2):79–108

    Article  Google Scholar 

  • Rozkov A, Avignone-Rossa CA, Ertl PF, Jones P, O'Kennedy RD, Smith JJ, Dale JW, Bushell ME (2004) Characterization of the metabolic burden on Escherichia coli DH1 cells imposed by the presence of a plasmid containing a gene therapy sequence. Biotechnol Bioeng 88(7):909–915

    Article  CAS  Google Scholar 

  • Rozkov A, Larsson B, Gillstrom S, Bjornestedt R, Schmidt SR (2008) Large-scale production of endotoxin-free plasmids for transient expression in mammalian cell culture. Biotechnol Bioeng 99(3):557–566

    Article  CAS  Google Scholar 

  • Schmid G, Schlaeger EJ, Wipf B (2001) Non-GMP plasmid production for transient transfection in bioreactors. Cytotechnology 35(3):157–164

    Article  CAS  Google Scholar 

  • Shene C, Andrews BA, Asenjo JA (2003) Study of recombinant microorganism populations characterized by their plasmid content per cell using a segregated model. Bioprocess Biosyst Eng 25(6):333–340

    Article  CAS  Google Scholar 

  • Silva F, Passarinha L, Sousa F, Queiroz JA, Domingues FC (2009) Influence of growth conditions on plasmid DNA production. J Microbiol Biotechnol 19(11):1408–1414

    CAS  Google Scholar 

  • Silva F, Lourenço O, Pina-Vaz C, Rodrigues AG, Queiroz JA, Domingues FC (2010) The use of DRAQ5 to monitor intracellular DNA in Escherichia coli by flow cytometry. J Fluoresc 20(4):907–914

    Article  CAS  Google Scholar 

  • Silva F, Lourenço O, Maia C, Queiroz JA, Domingues FC (2011) Impact of plasmid induction strategy on overall plasmid DNA yield and E. coli physiology using flow cytometry and real-time PCR. Process Biochem 46(1):174–181

    Article  CAS  Google Scholar 

  • Singer A, Eiteman MA, Altman E (2009) DNA plasmid production in different host strains of Escherichia coli. J Ind Microbiol Biotechnol 36(4):521–530

    Article  CAS  Google Scholar 

  • Skulj M, Okrslar V, Jalen S, Jevsevar S, Slanc P, Strukelj B, Menart V (2008) Improved determination of plasmid copy number using quantitative real-time PCR for monitoring fermentation processes. Microb Cell Fact 7:6–17

    Article  Google Scholar 

  • Sousa F, Freitas S, Azzoni AR, Prazeres DM, Queiroz J (2006) Selective purification of supercoiled plasmid DNA from clarified cell lysates with a single -agarose chromatography step. Biotechnol Appl Biochem 45(3):131–140

    Article  CAS  Google Scholar 

  • Wang Z, Xiang L, Shao J, Wegrzyn A, Wegrzyn G (2006) Effects of the presence of ColE1 plasmid DNA in Escherichia coli on the host cell metabolism. Microb Cell Fact 5:34–51

    Article  Google Scholar 

  • Williams SG, Cranenburgh RM, Weiss AME, Wrighton CJ, Sherratt DJ, Hanak JAJ (1998) Repressor titration: a novel system for selection and stable maintenance of recombinant plasmids. Nucleic Acids Res 26(9):2120–2124

    Article  CAS  Google Scholar 

  • Williams JA, Luke J, Langtry S, Anderson S, Hodgson CP, Carnes AE (2009) Generic plasmid DNA production platform incorporating low metabolic burden seed-stock and fed-batch fermentation processes. Biotechnol Bioeng 103(6):1129–1143

    Article  CAS  Google Scholar 

  • Xu J, Li W, Wu J, Zhang Y, Zhu Z, Liu J, Hu Z (2006) Stability of plasmid and expression of a recombinant gonadotropin-releasing hormone (GnRH) vaccine in Escherichia coli. Appl Microbiol Biotechnol 73(4):780–788

    Article  CAS  Google Scholar 

  • Zou S, Scarfo K, Nantz MH, Hecker JG (2010) Lipid-mediated delivery of RNA is more efficient than delivery of DNA in non-dividing cells. Int J Pharm 389(1–2):232–243

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by FCT, the Portuguese Foundation for Science and Technology (PTDC/EQU-EQU/65492/2006). Filomena Silva acknowledges a PhD fellowship (SFRH/BD/41521/2007) from FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda C. Domingues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, F., Queiroz, J.A. & Domingues, F.C. Plasmid DNA fermentation strategies: influence on plasmid stability and cell physiology. Appl Microbiol Biotechnol 93, 2571–2580 (2012). https://doi.org/10.1007/s00253-011-3668-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3668-6

Keywords

Navigation