Skip to main content
Log in

Large-scale production of tannase using the yeast Arxula adeninivorans

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Tannase (tannin acyl hydrolase, EC 3.1.1.20) hydrolyses the ester and depside bonds of gallotannins and gallic acid esters and is an important industrial enzyme. In the present study, transgenic Arxula adeninivorans strains were optimised for tannase production. Various plasmids carrying one or two expression modules for constitutive expression of tannase were constructed. Transformant strains that overexpress the ATAN1 gene from the strong A. adeninivorans TEF1 promoter produce levels of up to 1,642 U L−1 when grown in glucose medium in shake flasks. The effect of fed-batch fermentation on tannase productivity was then investigated in detail. Under these conditions, a transgenic strain containing one ATAN1 expression module produced 51,900 U of tannase activity per litre after 142 h of fermentation at a dry cell weight of 162 g L−1. The highest yield obtained from a transgenic strain with two ATAN1 expression modules was 31,300 U after 232 h at a dry cell weight of 104 g L−1. Interestingly, the maximum achieved yield coefficients [Y(P/X)] for the two strains were essentially identical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilar CN, Augur C, Favela-Torres E, Viniegra-González G (2001) Production of tannase by Aspergillus niger Aa-20 in submerged and solid-state fermentation: influence of glucose and tannic acid. J Ind Microbiol Biotechnol 26:296–302

    CAS  PubMed  Google Scholar 

  • Aguilar CN, Favela-Torres E, Viniegra-González G, Augur C (2002) Culture conditions dictate protease and tannase production in submerged and solid-state cultures of Aspergillus niger Aa-20. Appl Biochem Biotechnol 102–103:407–414

    PubMed  Google Scholar 

  • Albertse EH (2002) Cloning, expression and characterization of tannase from Aspergillus species. Ph.D. thesis, Fac Nat Agric Sci, Dept Microbiol Biotechnol, University of the Free State, Bloemfontein, South Africa

  • Aoki K, Shinke R, Nishira H (1976a) Purification and some properties of yeast tannase. Agric Biol Chem 40:79–85

    CAS  Google Scholar 

  • Aoki K, Shinke R, Nishira H (1976b) Chemical composition and molecular weight of yeast tannase. Agric Biol Chem 40:297–302

    CAS  Google Scholar 

  • Banerjee D, Mondal KC, Pati BR (2007) Tannase production by Aspergillus aculeatus DBF9 through solid-state fermentation. Acta Microbiol Immunol Hung 54:159–166

    CAS  PubMed  Google Scholar 

  • Barthomeuf C, Regerat F, Pourrat H (1994) Production, purification and characterization of a tannase from Aspergillus niger LCF8. J Ferment Technol 77:320–323

    CAS  Google Scholar 

  • Boadi DK, Neufeld RJ (2001) Encapsulation of tannase for the hydrolysis of tea tannins. Enzyme Microb Technol 28:590–595

    CAS  PubMed  Google Scholar 

  • Böer E, Wartmann T, Dlubatz K, Gellissen G, Kunze G (2004) Characterization of the Arxula adeninivorans AHOG1 gene and the encoded mitogen-activated protein kinase. Curr Genet 46:269–276

    PubMed  Google Scholar 

  • Böer E, Steinborn G, Matros A, Mock HP, Gellissen G, Kunze G (2007) Production of interleukin-6 in Arxula adeninivorans, Hansenula polymorpha and Saccharomyces cerevisiae by applying the wide-range yeast vector (CoMed™) system to simultaneous comparative assessment. FEMS Yeast Res 7:1181–1187

    PubMed  Google Scholar 

  • Böer E, Bode R, Mock HP, Piontek M, Kunze G (2009a) Atan1p-an extracellular tannase from the dimorphic yeast Arxula adeninivorans: molecular cloning of the ATAN1 gene and characterization of the recombinant enzyme. Yeast 26:323–337

    PubMed  Google Scholar 

  • Böer E, Steinborn G, Tag K, Körner M, Gellissen G, Kunze G (2009b) Arxula adeninivorans (Blastobotrys adeninivorans)—a dimorphic yeast of great biotechnological potential. In: Satyanarayana T, Kunze G (eds) Diversity and potential biotechnological applications in yeasts. Springer, Berlin, pp 453–468

    Google Scholar 

  • Böer E, Piontek M, Kunze G (2009c) Xplor®2—an optimized transformation/expression system for recombinant protein production in the yeast A. adeninivorans. Appl Microbiol Biotechnol 84:583–594

    PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Cantarelli C, Brenna O, Giovanelli G, Rossi M (1989) Beverage stabilization through enzymic removal of phenolics. Food Biotechnol 3:203–213

    CAS  Google Scholar 

  • Deschamps AM (1989) Microbiol degradation of tannins and the related compounds. In: Lewis NG, Paice MG (eds) Plant cell wall polymers biogenesis and biodegradation. American Chemical Society, Washington, pp 559–566

    Google Scholar 

  • Deschamps AM, Otuk G, Lebeault JM (1983) Production of tannase and degradation of chestnut tannins by bacteria. J Ferment Technol 61:55–59

    CAS  Google Scholar 

  • Gellissen G, Janowicz ZA, Merckelbach A, Piontek M, Keup P, Weydemann U, Hollenberg CP (1991) Heterologous gene expression in Hansenula polymorpha: efficient secretion of glucoamylase. Biotechnology 9:291–295

    CAS  PubMed  Google Scholar 

  • Gienow U, Kunze G, Schauer F, Bode R, Hofemeister J (1990) The yeast genus Trichosporon spec. LS3; molecular characterization of genomic complexity. Zbl Mikrobiol 145:3–12

    CAS  Google Scholar 

  • Hanahan D (1983) Studies on transformation of E. coli with plasmids. J Mol Biol 166:557–580

    CAS  PubMed  Google Scholar 

  • Haslam E, Stangroom JE (1966) The esterase and depsidase activities of the tannase. Biochem J 99:28–31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klabunde J, Kunze G, Gellissen G, Hollenberg CP (2003) Integration of heterologous genes in several yeast species using vectors containing a Hansenula polymorpha-derived rDNA-targeting element. FEMS Yeast Res 4:185–193

    CAS  PubMed  Google Scholar 

  • Knabben I, Regenstein L, Grumbach C, Steinbusch S, Kunze G, Buechs J (2010) Online determination of viable biomass up to very high cell densities in Arxula adeninivorans using an impedance signal. J Biotechnol 149:60–66

    CAS  PubMed  Google Scholar 

  • Knoll A, Bartsch S, Husemann B, Engel P, Schroer K, Ribeiro B, Stöckmann C, Seletzky J, Büchs J (2007) High cell density cultivation of recombinant yeasts and bacteria under non-pressurized and pressurized conditions in stirred tank bioreactors. J Biotechnol 132:167–179

    CAS  PubMed  Google Scholar 

  • Kumar RA, Gunasekaran P, Lakshmanan M (1999) Biodegradation of tannic acid by Citrobacter freundii isolated from a tannery effluent. J Basic Microbiol 39:161–168

    CAS  PubMed  Google Scholar 

  • Kunze G, Kunze I (1994) Characterization of Arxula adeninivorans strains from different habitats. Antonie Leeuwenhoek 65:607–614

    Google Scholar 

  • Kunze I, Nilsson C, Adler K, Manteuffel R, Horstmann C, Bröker M, Kunze G (1998) Correct targeting of a vacuolar tobacco chitinase in Saccharomyces cerevisiae—post-translational modifications are dependent on the host strain. Biochim Biophys Acta 1395:329–344

    CAS  PubMed  Google Scholar 

  • Kurtzmann CP, Robnett JC (2007) Multigene phylogenetic analysis of the Trichomonascus, Wickerhammiella and Zygoascus yeast clades, and the proposal of Sugiyamaella gen. nov. and 14 new species combinantions. FEMS Yeast Res 7:141–151

    Google Scholar 

  • Lekha PK, Lonsane BK (1997) Production and application of tannin acyl hydrolase: state of the art. Adv Appl Microbiol 44:215–259

    CAS  PubMed  Google Scholar 

  • Middelhoven JW, Hoogkamer-Te Niet MC, Kreger van Rij NJW (1984) Trichosporon adeninovorans sp. nov., a yeast species utilizing adenine, xanthine, uric acid, putrescine and primary n-alkylamines as the sole source of carbon, nitrogen and energy. Antonie Leeuwenhoek 50:369–387

    CAS  PubMed  Google Scholar 

  • Middelhoven WJ, de Jonge IM, Winter M (1991) Arxula adeninivorans, a yeast assimilating many nitrogenous and aromatic compounds. Antonie Leeuwenhoek 60:129–137

    Google Scholar 

  • Middelhoven WJ, Coenen A, Kraakman B, Gelpke MDS (1992) Degradation of some phenols and hydroxybenzoates by the imperfect ascomycetous yeasts Candida parapsilosis and Arxula adeninivorans: evidence for an operative gentisate pathway. Antonie Leeuwenhoek 62:181–187

    CAS  PubMed  Google Scholar 

  • Minocha N, Kaur P, Satyanarayana T, Kunze G (2007) Acid phosphatase production by recombinant Arxula adeninivorans. Appl Microbiol Biotechnol 76:387–393

    CAS  PubMed  Google Scholar 

  • Mondal KC, Pati BR (2000) Studies of the extracellular tannase from newly isolated Bacillus lichiniformis KBR6. J Basic Microbiol 40:223–232

    CAS  PubMed  Google Scholar 

  • Rajakumar GS, Nandy SC (1983) Isolation, purification and some properties of Penicillium chrysogenum tannase. Appl Environ Microbiol 46:525–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rana NK, Bhat TK (2005) Effect of fermentation system on the production and properties of tannase of Aspergillus niger vcan Tieghem MTCC 2425. J Gen Appl Microbiol 51:203–212

    CAS  PubMed  Google Scholar 

  • Rose MD, Winston F, Hieter P (1990) Methods in yeast genetics. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Rösel H, Kunze G (1998) Integrative transformation of the dimorphic yeast Arxula adeninivorans LS3 based on hygromycin B resistance. Curr Genet 33:157–163

    PubMed  Google Scholar 

  • Samsonova IA, Kunze G, Bode R, Böttcher F (1996) A set of genetic markers for the chromosomes of the imperfect yeast Arxula adeninivorans. Yeast 12:1209–1217

    CAS  PubMed  Google Scholar 

  • Schroeder IS, Rolletschek A, Blyszczuk P, Kania G, Wobus AM (2006) Differentiation of mouse embryonic stem cells to insulin-producing cells. Nat Protoc 1:495–507

    CAS  PubMed  Google Scholar 

  • Sharma S, Bhat TK, Dawra RK (2000) A spectrophotometric method for assay of tannase using rhodanine. Anal Biochem 279:85–89

    CAS  PubMed  Google Scholar 

  • Sittig M (1988) Trimethoprim. In: Sittig M (ed) Pharmaceutical manufacturing encyclopedia. William Andrew/Noyes, Westwood, pp 282–284

    Google Scholar 

  • Steinborn G, Gellissen G, Kunze G (2007a) A novel vector element providing multicopy vector integration in Arxula adeninivorans. FEMS Yeast Res 7:1197–1205

    CAS  PubMed  Google Scholar 

  • Steinborn G, Wartmann T, Gellissen G, Kunze G (2007b) Construction of an Arxula adeninivorans host-vector system based on trp1 complementation. J Biotechnol 127:392–401

    CAS  PubMed  Google Scholar 

  • Tanaka A, Ohnishi N, Fukui S (1967) Studies on the formation of vitamins and their function in hydrocarbon fermentation. Production of vitamin B6 by Candida albicans in hydrocarbon medium. J Ferment Technol 45:617–623

    CAS  Google Scholar 

  • Van der Walt JP, Smith MT, Yamada Y (1990) Arxula gen. nov. (Candidaceae), a new anamorphic, arthroconidial yeast genus. Antonie Leeuwenhoek 57:59–61

    PubMed  Google Scholar 

  • Wartmann T, Kunze G (2000) Genetic transformation and biotechnological application of the yeast Arxula adeninivorans. Appl Microbiol Biotechnol 54:619–624

    CAS  PubMed  Google Scholar 

  • Wartmann T, Krüger A, Adler K, Bui MD, Kunze I, Kunze G (1995) Temperature dependent dimorphism of the yeast Arxula adeninivorans LS3. Antonie Leeuwenhoek 68:215–223

    CAS  PubMed  Google Scholar 

  • Wartmann T, Böer E, Huarto-Pico A, Sieber H, Bartelsen O, Gellissen G, Kunze G (2002) High-level production and secretion of recombinant proteins by the dimorphic yeast Arxula adeninivorans. FEMS Yeast Res 2:363–369

    CAS  PubMed  Google Scholar 

  • Wartmann T, Stoltenburg R, Böer E, Sieber H, Bartelsen O, Gellissen G, Kunze G (2003a) The ALEU2 gene—a new component for an Arxula adeninivorans-based expression platform. FEMS Yeast Res 3:223–232

    CAS  PubMed  Google Scholar 

  • Wartmann T, Bellebna C, Böer E, Gellissen G, Kunze G (2003b) The constitutive AHSB4 promoter—a novel component of the Arxula adeninivorans-based expression platform. Appl Microbiol Biotechnol 62:528–535

    CAS  PubMed  Google Scholar 

  • Yadav MA, Aggarwal NK, Kumar K, Kumar A (2008) Tannase production by Aspergillus fumigatus MA under solid-state fermentation. World J Microbiol Biotechnol 24:3023–3030

    Google Scholar 

  • Yang XX, Wartmann T, Stoltenburg R, Kunze G (2000) Halotolerance of the yeast Arxula adeninivorans LS3. Antonie Leeuwenhoek 77:303–311

    CAS  PubMed  Google Scholar 

  • Zhong X, Peng L, Zheng S, Sun Z, Ren Y, Dong M, Xu A (2004) Secretion, purification, and characterization of a recombinant Aspergillus oryzae tannase in Pichia pastoris. Protein Expr Purif 36:165–169

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors are grateful to thank Dr. P. Hardy for helpful discussions and critical reading of the manuscript and H. Bohlmann for excellent technical assistance. The research work was supported by grants from the Ministry of Science and Research of Sachsen/Anhalt (grant no. 3328A/0021T) and by Funds of the Chemical Industry (GK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gotthard Kunze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böer, E., Breuer, F.S., Weniger, M. et al. Large-scale production of tannase using the yeast Arxula adeninivorans . Appl Microbiol Biotechnol 92, 105–114 (2011). https://doi.org/10.1007/s00253-011-3320-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3320-5

Keywords

Navigation