Skip to main content

Advertisement

Log in

Isolation and characterization of pcsB, the gene for a polyene carboxamide synthase that tailors pimaricin into AB-400

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

From cell-free extracts of Streptomyces RGU5.3, a tailoring activity of pimaricin, leading to the biosynthesis of its natural carboxamide derivative AB-400, was recently identified. The two polyene macrolides, pimaricin and AB-400, were produced in almost equal quantities and can be detected in the fermentation broth of the producer strain. This report concerns the isolation and partial characterization of the gene, polyene carboxamide synthase (pcsB), responsible for the bioconversion. The gene encoded an asparagine synthase-like protein, belonging to the type II glutamine amidotransferase family, and was named pcsB. The fermentation broth of a recombinant strain carrying the engineered pcsB gene under the control of the inducible tipA promoter within an integrative vector produces the carboxamide AB-400 as the main polyene macrolide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anton N, Mendes MV, Martin JF et al (2004) Identification of PimR as a positive regulator of pimaricin biosynthesis in Streptomyces natalensis. J Bacteriol 186:2567–2575

    Article  CAS  Google Scholar 

  • Anton N, Santos-Aberturas J, Mendes MV et al (2007) PimM, a PAS domain positive regulator of pimaricin biosynthesis in Streptomyces natalensis. Microbiology 153:3174–3183

    Article  CAS  Google Scholar 

  • Aparicio JF, Colina AJ, Ceballos E et al (1999) The biosynthetic gene cluster for the 26-membered ring polyene macrolide pimaricin: a new polyketide synthase organization encoded by two subclusters separated by functionalization genes. J Biol Chem 274:10133–10139

    Article  CAS  Google Scholar 

  • Aparicio JF, Fouces R, Mendes MV et al (2000) A complex multienzyme system encoded by five polyketide synthase genes is involved in the biosynthesis of the 26-membered polyene macrolide pimaricin in Streptomyces natalensis. Chem Biol 7:895–905

    Article  CAS  Google Scholar 

  • Atlas RM (1993) Microbiological media. CRC, Boca Raton

    Google Scholar 

  • Berges H, Checroun C, Guiral S et al (2001) A glutamine-amidotransferase-like protein modulates FixT anti-kinase activity in Sinorhizobium meliloti. BMC Microbiol 1:6

    Article  CAS  Google Scholar 

  • Bruzzese T, Rimaroli C, Bonabello A et al (1996) Amide derivatives of partricin A with potent antifungal activity. Eur J Med Chem 31:965–972

    Article  CAS  Google Scholar 

  • Caffrey P, Aparicio JF, Malpartida F et al (2008) Biosynthetic engineering of polyene macrolides towards generation of improved antifungal and antiparasitic agents. Curr Top Med Chem 8:639–653

    Article  CAS  Google Scholar 

  • Cañedo LM, Costa L, Criado LM et al (2000) AB-400, a new tetraene macrolide isolated from Streptomyces costae. J Antibiot (Tokyo) 53:623–626

    Google Scholar 

  • Chapman SW, Sullivan DC, Cleary JD (2008) In search of the holy grail of antifungal therapy. Trans Am Clin Climatol Assoc 119:197–215

    Google Scholar 

  • Chin-A-Woeng TFC, Thomas-Oates JE, Lugtenberg BJ et al (2001) Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains. Mol Plant Microbe Interact 14:1006–1015

    Article  CAS  Google Scholar 

  • Coukell AJ, Brogden RN (1998) Liposomal amphotericin B. Therapeutic use in the management of fungal infections and visceral leishmaniasis. Drugs 55:585–612

    Article  CAS  Google Scholar 

  • Cybulska B, Bolard J, Seksek O et al (1995) Identification of the structural elements of amphotericin B and other polyene macrolide antibiotics of the heptaene group influencing the ionic selectivity of the permeability pathways formed in the red cell membrane. Biochim Biophys Acta 1240:167–178

    Article  Google Scholar 

  • Ekins S, Mestres J, Testa B (2007) In silico pharmacology for drug discovery: applications to targets and beyond. Br J Pharmacol 152:21–37

    Article  CAS  Google Scholar 

  • El-Gendy MM, Shaaban M, Shaaban KA et al (2008) Essramycin: a first triazolopyrimidine antibiotic isolated from nature. J Antibiot (Tokyo) 61:149–157

    CAS  Google Scholar 

  • Enriquez LL, Mendes MV, Anton N et al (2006) An efficient gene transfer system for the pimaricin producer Streptomyces natalensis. FEMS Microbiol Lett 257:312–318

    Article  CAS  Google Scholar 

  • Frischauf AM, Lehrach H, Poustka A et al (1992) Lambda replacement vectors carrying polylinker sequences. J Mol Biol 170:827–842

    Article  Google Scholar 

  • Ghorbel S, Kormanec J, Artus A et al (2006) Transcriptional studies and regulatory interactions between the phoR-phoP operon and the phoU, mtpA, and ppk genes of Streptomyces lividans TK24. J Bacteriol 188:677–686

    Article  CAS  Google Scholar 

  • Gonzalez-Diaz H, Prado-Prado F, Ubeira FM (2008) Predicting antimicrobial drugs and targets with the MARCH-INSIDE approach. Curr Top Med Chem 8:1676–1690

    Article  CAS  Google Scholar 

  • Hirasawa T, Wachi M, Nagai K (2000) A mutation in the Corynebacterium glutamicum ltsA gene causes susceptibility to lysozyme, temperature-sensitive growth, and L-glutamate production. J Bacteriol 182:2696–2701

    Article  CAS  Google Scholar 

  • Jarzebski A, Falkowski L, Borowski E (1982) Synthesis and structure–activity relationships of amides of amphotericin B. J Antibiot (Tokyo) 35:220–229

    CAS  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ et al (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  • MacNeil DJ, Gewain KM, Ruby CL et al (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68

    Article  CAS  Google Scholar 

  • Malpartida F, Hopwood DA (1986) Physical and genetic characterisation of the gene cluster for the antibiotic actinorhodin in Streptomyces coelicolor A3(2). Mol Gen Genet 205:66–73

    Article  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Mavrodi DV, Bonsall RF, Delaney SM et al (2001) Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183:6454–6465

    Article  CAS  Google Scholar 

  • Mazerski J, Bolard J, Borowski E (1995) Effect of the modifications of ionizable groups of amphotericin B on its ability to form complexes with sterols in hydroalcoholic media. Biochim Biophys Acta 1236:170–176

    Article  Google Scholar 

  • Mendes MV, Recio E, Fouces R et al (2001) Engineered biosynthesis of novel polyenes: a pimaricin derivative produced by targeted gene disruption in Streptomyces natalensis. Chem Biol 8:635–644

    Article  CAS  Google Scholar 

  • Mendes MV, Anton N, Martin JF et al (2005) Characterization of the polyene macrolide P450 epoxidase from Streptomyces natalensis that converts de-epoxypimaricin into pimaricin. Biochem J 386:57–62

    Article  CAS  Google Scholar 

  • Mendes MV, Recio E, Anton N et al (2007a) Cholesterol oxidases act as signaling proteins for the biosynthesis of the polyene macrolide pimaricin. Chem Biol 14:279–290

    Article  CAS  Google Scholar 

  • Mendes MV, Tunca S, Anton N et al (2007b) The two-component phoR-phoP system of Streptomyces natalensis: inactivation or deletion of phoP reduces the negative phosphate regulation of pimaricin biosynthesis. Metab Eng 9:217–227

    Article  CAS  Google Scholar 

  • Mitani Y, Meng X, Kamagata Y et al (2005) Characterization of LtsA from Rhodococcus erythropolis, an enzyme with glutamine amidotransferase activity. J Bacteriol 187:2582–2591

    Article  CAS  Google Scholar 

  • Murakami T, Holt TG, Thompson CJ (1989) Thiostrepton-induced gene expression in Streptomyces lividans. J Bacteriol 171:1459–1466

    CAS  Google Scholar 

  • Nosanchuk JD (2006) Current status and future of antifungal therapy for systemic mycoses. Recent Pat Antiinfect Drug Discov 1:75–84

    Article  CAS  Google Scholar 

  • Odds FC, Brown AJ, Gow NA (2003) Antifungal agents: mechanisms of action. Trends Microbiol 11:272–279

    Article  CAS  Google Scholar 

  • Paquet V, Carreira EM (2006) Significant improvement of antifungal activity of polyene macrolides by bisalkylation of the mycosamine. Org Lett 8:1807–1809

    Article  CAS  Google Scholar 

  • Paquet V, Volmer AA, Carreira EM (2008) Synthesis and in vitro biological properties of novel cationic derivatives of amphotericin B. Chemistry 14:2465–2481

    Article  CAS  Google Scholar 

  • Pérez-Zúñiga FJ, Seco EM, Cuesta T et al (2004) CE-108, a new macrolide tetraene antibiotic. J Antibiot (Tokyo) 57:197–204

    Google Scholar 

  • Power P, Dunne T, Murphy B et al (2008) Engineered synthesis of 7-oxo- and 15-deoxy-15-oxo-amphotericins: insights into structure-activity relationships in polyene antibiotics. Chem Biol 15:78–86

    Article  CAS  Google Scholar 

  • Preobrazhenskaya MN, Olsufyeva EN, Solovieva SE et al (2008) Chemical modification and biological evaluation of new semisynthetic derivatives of 28, 29-didehydronystatin A(1) (S44HP), a genetically engineered antifungal polyene macrolide antibiotic. J Med Chem 52:189–196

    Article  Google Scholar 

  • Ramos-Vega AL, Davila-Martinez Y, Sohlenkamp C et al (2009) SMb20651 is another acyl carrier protein from Sinorhizobium meliloti. Microbiology 155:257–267

    Article  CAS  Google Scholar 

  • Ren H, Liu J (2006) AsnB is involved in natural resistance of Mycobacterium smegmatis to multiple drugs. Antimicrob Agents Chemother 50:250–255

    Article  CAS  Google Scholar 

  • Resat H, Sungur FA, Baginski M et al (2000) Conformational properties of amphotericin B amide derivatives—impact on selective toxicity. J Comput Aided Mol Des 14:689–703

    Article  CAS  Google Scholar 

  • Rice P, Longden I, leasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277

    Article  CAS  Google Scholar 

  • Risovic V, Boyd M, Choo E et al (2003) Effects of lipid-based oral formulations on plasma and tissue amphotericin B concentrations and renal toxicity in male rats. Antimicrob Agents Chemother 47:3339–3342

    Article  CAS  Google Scholar 

  • Sachs-Barrable K, Lee SD, Wasan EK et al (2008) Enhancing drug absorption using lipids: a case study presenting the development and pharmacological evaluation of a novel lipid-based oral amphotericin B formulation for the treatment of systemic fungal infections. Adv Drug Deliv Rev 60:692–701

    Article  CAS  Google Scholar 

  • Saint-Julien L, Joly V, Seman M et al (1992) Activity of MS-8209, a nonester amphotericin B derivative, in treatment of experimental systemic mycoses. Antimicrob Agents Chemother 36:2722–2728

    CAS  Google Scholar 

  • Sarachu M, Colet M (2005) wEMBOSS: a web interface for EMBOSS. Bioinformatics 21:540–541

    Article  CAS  Google Scholar 

  • Seco EM, Pérez-Zuñiga FJ, Rolón MS et al (2004) Starter unit choice determines the production of two tetraene macrolides, rimocidin and CE-108, in Streptomyces diastaticus var. 108. Chem Biol 11:357–366

    Article  CAS  Google Scholar 

  • Seco EM, Cuesta T, Fotso S et al (2005a) Two polyene amides produced by genetically modified Streptomyces diastaticus var. 108. Chem Biol 12:535–543

    Article  CAS  Google Scholar 

  • Seco EM, Fotso S, Laatsch H et al (2005b) A tailoring activity is responsible for generating polyene amide derivatives in Streptomyces diastaticus var. 108. Chem Biol 12:1093–1101

    Article  CAS  Google Scholar 

  • Sola-Landa A, Moura RS, Martin JF (2003) The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci USA 100:6133–6138

    Article  CAS  Google Scholar 

  • te Welscher YM, ten Napel HH, Balague MM et al (2008) Natamycin blocks fungal growth by binding specifically to ergosterol without permeabilizing the membrane. J Biol Chem 283:6393–6401

    Article  CAS  Google Scholar 

  • Volff JN, Eichenseer C, Viell P et al (1996) Nucleotide sequence and role in DNA amplification of the direct repeats composing the amplifiable element AUD1 of Streptomyces lividans 66. Mol Microbiol 21:1037–1047

    Article  CAS  Google Scholar 

  • Welscher YM, ten Napel HH, Balague MM et al (2008) Natamycin blocks fungal growth by binding specifically to ergosterol without permeabilizing the membrane. J Biol Chem 283:6393–6401

    Article  Google Scholar 

  • Wright F, Bibb MJ (1992) Codon usage in the G+C-rich Streptomyces genome. Gene 113:55–65

    Article  CAS  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  CAS  Google Scholar 

  • Yardley V, Croft SL (1997) Activity of liposomal amphotericin B against experimental cutaneous leishmaniasis. Antimicrob Agents Chemother 41:752–756

    CAS  Google Scholar 

  • Yoshida K, Fujita Y, Ehrlich SD (1999) Three asparagine synthetase genes of Bacillus subtilis. J Bacteriol 181:6081–6091

    CAS  Google Scholar 

  • Zalkin H (1998) Enzymes utilizing glutamine as an amide donor. Adv Enzymol Relat Areas Mol Biol 72:87–144

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from Spanish Ministerio de Ciencia e Innovación BIO2005-02785, BIO2008-03683, and CIT-010000-2008-4. We do not have any conflict of interest which may affect either the results or our interpretation. We thank Sir Prof. David A. Hopwood for critical reading the manuscript. We thank C. Nieto for her excellent technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Malpartida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miranzo, D., Seco, E.M., Cuesta, T. et al. Isolation and characterization of pcsB, the gene for a polyene carboxamide synthase that tailors pimaricin into AB-400. Appl Microbiol Biotechnol 85, 1809–1819 (2010). https://doi.org/10.1007/s00253-009-2195-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2195-1

Keywords

Navigation