Skip to main content
Log in

Biotechnological production of d-glyceric acid and its application

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Glycerol is currently produced in large amounts as a by-product during fat splitting and biodiesel fuel production. Over the past decade, both chemical and biotechnological processes to convert glycerol to value-added chemicals have been increasingly explored. This mini-review provides recent information about the biotechnological production of a glycerol derivative, d-glyceric acid (d-GA), and its possible applications. Little is known about GA as a bioproduct, but it is naturally found in different kinds of plants as a phytochemical constituent and is reported to have some biological activity. A racemic mixture of dl-GA can be obtained from glycerol via chemical oxidation; however, d-GA is mainly biotechnologically produced with the aid of bacteria. Under aerobic conditions, some acetic acid bacteria transform glycerol into d-GA, and optimization of initial glycerol concentration and aeration rate provided a yield of more than 80 g/l d-GA, using a strain of Gluconobacter frateurii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbadi A, van Bekkum H (1996) Selective chemo-catalytic routs for the preparation of β-hydroxypyruvic acid. Appl Catal A Gen 148:113–122

    Article  CAS  Google Scholar 

  • Anastas PT, Breen JJ (1997) Design for the environment and green chemistry: the heart and soul of industrial ecology. J Clean Prod 5:97–102

    Article  Google Scholar 

  • Bianchi CL, Canton P, Dimitratos N, Porta F, Prati L (2005) Selective oxidation of glycerol with oxygen using mono and bimetallic catalysts based on Au, Pd, and Pt metals. Catal Today 102:203–212

    Article  Google Scholar 

  • Biebl H, Menzel K, Zeng A-P, Deckwer W-D (1999) Microbial production of 1,3-propanediol. Appl Biochem Biotechnol 52:289–297

    CAS  Google Scholar 

  • Carrettin S, McMorn P, Johnston P, Griffin K, Hutchings GJ (2002) Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide. Chem Commun 7:696–697

    Article  Google Scholar 

  • Carrettin S, McMorn P, Johnston P, Griffin K, Kiely CJ, Hutchings GJ (2003) Oxidation of glycerol using supported Pt, Pd and Au catalysts. Phys Chem Chem Phys 5:1329–1336

    Article  CAS  Google Scholar 

  • Chiellini E, Faggioni S, Solaro R (1990) Polyesters based on glyceric acid derivatives as potential biodegradable materials. J Bioact Compat Polym 5:16–30

    Article  CAS  Google Scholar 

  • Claret C, Bories A, Soucaille P (1992) Glycerol inhibition of growth and dihydroxyacetone production by Gluconobacter oxydans. Curr Microbiol 25:149–155

    Article  CAS  Google Scholar 

  • Claude S (1992) Research of new outlets for glycerol—recent developments in France. Fett (Weinh) 101:101–104

    Article  Google Scholar 

  • da Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 27:30–39

    Article  Google Scholar 

  • DiBenedetto LJ, Huang SJ (1988) Biodegradable hydroxylated polymers as controlled release agents. Polym Mater Sci Eng 59:812–819

    CAS  Google Scholar 

  • Duke JA (2001) Handbook of phytochemical constituents of GRAS herbs and other economic plants. CRC, Boca Raton, FL

    Google Scholar 

  • Eriksson CJP, Saarenmaa TPS, Bykov IL, Heino PU (2007) Acceleration of ethanol and acetaldehyde oxidation by d-glycerate in rats. Metabolism 56:895–898

    Article  CAS  Google Scholar 

  • Fong C, Wells D, Krodkiewska I, Booth J, Hartley PG (2007) Synthesis and mesophases of glycerate surfactants. J Phys Chem B 111:1384–1392

    Article  CAS  Google Scholar 

  • Fordham P, Besson M, Gallezot P (1995) Selective catalytic oxidation of glyceric acid to tartronic and hydroxypyruvic acids. Appl Catal A Gen 133:L179–L184

    Article  CAS  Google Scholar 

  • Garcia R, Besson M, Gallezot P (1995) Chemoselective catalytic oxidation of glycerol with air on platinum metals. Appl Catal A Gen 127:165–176

    Article  CAS  Google Scholar 

  • Habe H, Fukuoka T, Kitamoto D, Sakaki K (2009a) Biotransformation of glycerol to d-glyceric acid by Acetobacter tropicalis. Appl Microbiol Biotechnol 81:1033–1039

    Article  CAS  Google Scholar 

  • Habe H, Fukuoka T, Kitamoto D, Sakaki K (2009b) Application of electrodialysis to glycerate recovery from a glycerol containing model solution and culture broth. J Biosci Bioeng 107:425–428

    Article  CAS  Google Scholar 

  • Habe H, Shimada Y, Fukuoka T, Kitamoto D, Itagaki M, Watanabe K, Yanagishita H, and Sakaki K (2009c) Production of glyceric acid by Gluconobacter sp. NBRC3259 using raw glycerol. Biosci Biotechnol Biochem (in press)

  • Handa SS, Sharma A, Chakraborti KK (1986) Natural products and plants as liver protecting drugs. Fitoterapia 57:307–351

    CAS  Google Scholar 

  • Huang C, Xu T, Zhang Y, Xue Y, Chen G (2008) Application of electrodialysis to the production of organic acids: state-of-the-art and recent developments. J Membr Sci 288:1–12

    Article  Google Scholar 

  • Kimura H, Tsuto K, Wakisaka T, Kazumi Y, Inaya Y (1993) Selective oxidation of glycerol on platinum–bismuth catalyst. Appl Catal A Gen 96:217–228

    Article  CAS  Google Scholar 

  • Lešová K, Šturdíková M, Proksa B, Pigoš M, Liptaj T (2001) OR-1—a mixture of esters of glyceric acid produced by Penicillium funiculosum and its antitrypsin activity. Folia Microbiol 46:21–23

    Article  Google Scholar 

  • Mahler HE, Cordes EH (1967) Biological chemistry. Harper and Dow, New York

    Google Scholar 

  • Matsushita K, Toyama H, Adachi O (1994) Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol 36:247–301

    Article  CAS  Google Scholar 

  • Miltenberger K (1989) Hydroxycarboxylic acids, aliphatic. Ullmann’s encyclopedia of industrial chemistry, vol A13. Wiley, Weinheim, pp 507–517

    Google Scholar 

  • Mishra R, Jain SR, Kumar A (2008) Microbial production of dihydroxyacetone. Biotechnol Adv 26:293–303

    Article  CAS  Google Scholar 

  • Mohra Raj S, Rathnasingh C, Jung WC, Park S (2009) Effect of process parameters on 3-hydroxypropionic acid production from glycerol using a recombinant Escherichia coli. Appl Microbiol Biotechnol. doi:https://doi.org/10.1007/s00253-008-1608-x

    Article  CAS  Google Scholar 

  • Pagliaro M, Ciriminna R, Kimura H, Rossi M, Della Pina C (2007) From glycerol to value-added products. Angew Chem Int ed 46:4434–4440

    Google Scholar 

  • Porta F, Prati L (2004) Selective oxidation of glycerol to sodium glycerate with gold-on-carbon catalyst: an insight into reaction selectivity. J Catal 224:397–403

    Article  CAS  Google Scholar 

  • Rahman MA, Humphreys RWR, Wu S-R (1995a) Method of conditioning fabrics with glyceric acid based biodegradable molecules. United States Patent US005456846A

  • Rahman MA, Humphreys RWR, Wu S-R (1995b) Biodegradable fabric conditioning molecules based on glyceric acid. United States Patent US005500139A

  • Rosseto R, Tcacenco CM, Ranganathan R, Hajdu J (2008) Synthesis of phosphatidylcholine analogues derived from glyceric acid: a new class of biologically active phospholipid compounds. Tetrahedron Lett 49:3500–3503

    Article  CAS  Google Scholar 

  • Švitel J, Šturdík E (1994) Product yield and by-product formation in glycerol conversion to dihydroxyacetone by Gluconobacter oxydans. J Ferment Bioeng 78:351–355

    Article  Google Scholar 

  • Wada R, Hyon S-H, Ikada Y (1996) New biodegradable oligoesters for pharmaceutical application. J Biomater Sci Polym Ed 7:715–725

    Article  CAS  Google Scholar 

  • Weber AL (1987) Oligoglyceric acid synthesis by autocondensation of glycerol thioester. J Mol Evol 25:191–196

    Article  CAS  Google Scholar 

  • Weber AL (1989) Thermal synthesis and hydrolysis of polyglyceric acid. Orig Life Evol Biosph 19:7–19

    Article  CAS  Google Scholar 

  • Willke T, Vorlop K (2008) Biotransformation of glycerol into 1,3-propandiol. Eur J Lipid Sci Technol 110:831–840

    Article  CAS  Google Scholar 

  • Zhou C-H, Beltramini JN, Fan Y-X, Lu GQ (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37:527–549

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the New Energy and Industrial Technology Development Organization (NEDO) of Japan for financial support (the Industrial Technology Research Grant Program: 08A26202c).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Habe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habe, H., Fukuoka, T., Kitamoto, D. et al. Biotechnological production of d-glyceric acid and its application. Appl Microbiol Biotechnol 84, 445–452 (2009). https://doi.org/10.1007/s00253-009-2124-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2124-3

Keywords

Navigation