Skip to main content

Advertisement

Log in

Functional genes reveal the intrinsic PAH biodegradation potential in creosote-contaminated groundwater following in situ biostimulation

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A small-scale functional gene array containing 15 functional gene probes targeting aliphatic and aromatic hydrocarbon biodegradation pathways was used to investigate the effect of a pilot-scale air sparging and nutrient infiltration treatment on hydrocarbon biodegradation in creosote-contaminated groundwater. Genes involved in the different phases of polycyclic aromatic hydrocarbon (PAH) biodegradation were detected with the functional gene array in the contaminant plume, thus indicating the presence of intrinsic biodegradation potential. However, the low aerobic fluorescein diacetate hydrolysis, the polymerase chain reaction (PCR) amplification of 16S rRNA genes closely similar to sulphate-reducing and denitrifying bacteria and the negligible decrease in contaminant concentrations showed that aerobic PAH biodegradation was limited in the anoxic groundwater. Increased abundance of PAH biodegradation genes was detected by functional gene array in the monitoring well located at the rear end of the biostimulated area, which indicated that air sparging and nutrient infiltration enhanced the intrinsic, aerobic PAH biodegradation. Furthermore, ten times higher naphthalene dioxygenase gene copy numbers were detected by real-time PCR in the biostimulated area, which was in good agreement with the functional gene array data. As a result, functional gene array analysis was demonstrated to provide a potential tool for evaluating the efficiency of the bioremediation treatment for enhancing hydrocarbon biodegradation in field-scale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alef K (1995) Estimation of the hydrolysis of fluorescein diacetate. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry, 3rd edn. Academic, London, UK, pp 232–233

    Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson RT, Lovley DR (1997) Ecology and biochemistry of in situ groundwater bioremediation. Adv Microb Ecol 15:289–350

    Article  CAS  Google Scholar 

  • Bakermans C, Madsen EL (2002) Diversity of 16S rDNA and naphthalene dioxygenase genes from coal-tar-waste-contaminated aquifer waters. Microb Ecol 44:95–106

    Article  CAS  PubMed  Google Scholar 

  • Bakermans C, Hohnstock-Ashe AM, Padmanabhan S, Padmanabhan P, Madsen EL (2002) Geochemical and physiological evidence for mixed aerobic and anaerobic field biodegradation of coal tar waste by subsurface microbial communities. Microb Ecol 44:107–117

    Article  CAS  PubMed  Google Scholar 

  • Baldwin BR, Nakatsu CH, Nies L (2008) Enumeration of aromatic oxygenase genes to evaluate monitored natural attenuation at gasoline-contaminated sites. Water Res 42:723–731

    Article  CAS  PubMed  Google Scholar 

  • Cavalca L, Dell’Amico E, Andreoni V (2004) Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater: diversity of bacterial population and toluene monoxygenase genes. Appl Microbiol Biotechnol 64:576–587

    Article  CAS  PubMed  Google Scholar 

  • Cerniglia CE (1984) Microbial metabolism of polycyclic aromatic hydrocarbons. Adv Appl Microbiol 30:31–71

    Article  CAS  PubMed  Google Scholar 

  • Denef VJ, Park J, Rodrigues JL, Tsoi TV, Hashsham SA, Tiedje JM (2003) Validation of a more sensitive method for using spotted oligonucleotide DNA microarrays for functional genomics studies on bacterial communities. Environ Microbiol 5:933–943

    Article  CAS  PubMed  Google Scholar 

  • Gentry TJ, Wickham GS, Schadt CW, He Z, Zhou J (2006) Microarray applications in microbial ecology research. Microb Ecol 52:159–175

    Article  CAS  PubMed  Google Scholar 

  • Ferguson AS, Huang WE, Lawson KA, Doherty R, Gibert O, Dickson KW, Whiteley AS, Kulakov LA, Thompson IP, Kalin RM, Larkin MJ (2007) Microbial analysis of soil and groundwater from a gasworks site and comparison with a sequenced biological reactive barrier remediation process. J Appl Microbiol 102:1227–1238

    Article  CAS  PubMed  Google Scholar 

  • He Z, Gentry TJ, Schadt CW, Wu L, Liebich J, Chong SC, Huang Z, Wu W, Gu B, Jardine P, Criddle C, Zhou J (2007) GeoChip: a comprehensive microarray for investigating biochemical, ecological and environmental processes. ISME J 1:67–77

    Article  CAS  PubMed  Google Scholar 

  • Iwai S, Kurisu F, Urakawa H, Yagi O, Kasuga I, Furumai H (2008) Development of an oligonucleotide microarray to detect di- and monooxygenase genes for benzene degradation in soil. FEMS Microbiol Lett 285:111–121

    Article  CAS  PubMed  Google Scholar 

  • Jeon CO, Park M, Ro HS, Park W, Madsen EL (2006) The naphthalene catabolic (nag) genes of Polaromonas naphthalenivorans CJ2: evolutionary implications for two gene clusters and novel regulatory control. Appl Environ Microbiol 72:1086–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnsen AR, Karlson U (2005) PAH degradation capacity of soil microbial communities—does it depend on PAH exposure? Microb Ecol 50:488–495

    Article  CAS  PubMed  Google Scholar 

  • Kepner RL, Pratt JR (1994) Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiol Rev 58:603–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liao P, Chen T, Chung P (2001) A fast algorithm for multilevel thresholding. J Inf Sci Eng 17:713–727

    Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NRC (1993) In situ bioremediation; when does it work?. National Academy Press, Washington, DC

    Google Scholar 

  • Nyyssönen M, Piskonen R, Itävaara M (2006) A targeted real-time PCR assay for studying naphthalene degradation in the environment. Microb Ecol 52:533–543

    Article  PubMed  CAS  Google Scholar 

  • Nyyssönen M, Piskonen R, Itävaara M (2008) Monitoring aromatic hydrocarbon biodegradation by functional marker genes. Environ Pollut 154:192–202

    Article  PubMed  CAS  Google Scholar 

  • Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piskonen R, Itävaara M (2004) Evaluation of chemical pretreatment of contaminated soil for improved PAH bioremediation. Appl Microbiol Biotechnol 65:627–634

    Article  CAS  PubMed  Google Scholar 

  • Piskonen R, Nyyssönen M, Itävaara M (2005) Monitoring of accelerated naphthalene-biodegradation in a bioaugmented soil slurry. Biodegradation 16:127–134

    Article  CAS  PubMed  Google Scholar 

  • Piskonen R, Nyyssönen M, Itävaara M (2008) Evaluating the biodegradation of aromatic hydrocarbons by monitoring of several functional genes. Biodegradation 19:883–895

    Article  CAS  PubMed  Google Scholar 

  • Pulli T, Höyhtyä M, Söderlund H, Takkinen K (2005) One-step homogeneous immunoassay for small analytes. Anal Chem 77:2637–2642

    Article  CAS  PubMed  Google Scholar 

  • Rhee SK, Liu X, Wu L, Chong SC, Wan X, Zhou J (2004) Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Appl Environ Microbiol 70:4303–4317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riser-Roberts E (1998) Remediation of petroleum contaminated soils: biological, physical, and chemical processes. CRC, New York

    Book  Google Scholar 

  • Ringelberg DB, Talley JW, Perkins EJ, Tucker SG, Luthy RG, Bouwer EJ, Fredrickson HL (2001) Succession of phenotypic, genotypic, and metabolic community characteristics during in vitro bioslurry treatment of polycyclic aromatic hydrocarbon-contaminated sediments. Appl Environ Microbiol 67:1542–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–8

    Article  CAS  PubMed  Google Scholar 

  • Salminen JM, Tuomi PM, Jørgensen KS (2008) Functional gene abundances (nahAc, alkB, xylE) in the assessment of the efficacy of bioremediation. Appl Biochem Biotechnol 151:638–652

    Article  CAS  PubMed  Google Scholar 

  • SFS (1979) Determination of pH-value of water. Finnish Standards Association, SFS 3021, Helsinki

    Google Scholar 

  • SFS (1980) Metal content of water, sludge and sediment determined by atomic absorption spectroscopy, atomization in flame. Special guidelines for lead, iron, cadmium, cobalt, copper, nickel and zinc. Finnish Standards Association, SFS 3047, Helsinki

    Google Scholar 

  • SFS (1994) Water quality. Determination of electrical conductivity (ISO 7888:1985). Finnish Standards Association, SFS 27888, Helsinki

    Google Scholar 

  • SFS (1997) Water analysis. Guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC). Finnish Standards Association, SFS 1484, Helsinki

    Google Scholar 

  • Stephen JR, Chang YJ, Gan YD, Peacock A, Pfiffner SM, Barlecona MJ, White DC, Macnaughton SJ (1999) Microbial characterization of a JP-4 fuel contaminated site using a combined lipid biomarker/PCR-DGGE based approach. Environ Microbiol 1:231–41

    Article  CAS  PubMed  Google Scholar 

  • Stübner S, Wind T, Conrad R (1998) Sulfur oxidation of in rice field soil: activity, enumeration, isolation and characterization of thiosulfate-oxidizing bacteria. Syst Appl Microbiol 21:569–578

    Article  PubMed  Google Scholar 

  • Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolker-Nielsen T, Brinch UC, Ragas PC, Andersen JB, Jacobsen CS, Molin S (2000) Development and dynamics of Pseudomonas sp. biofilms. J Bacteriol 182:6482–6489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuomi PM, Salminen JM, Jorgensen KS (2004) The abundance of nahAc genes correlates with the 14C-naphthalene mineralization potential in petroleum hydrocarbon-contaminated oxic soil layers. FEMS Microbiol Ecol 51:99–107

    Article  CAS  PubMed  Google Scholar 

  • Wilson MS, Bakermans C, Madsen EL (1999) In situ, real-time catabolic gene expression: extraction and characterization of naphthalene dioxyegnase mRNA transcripts from groundwater. Appl Environ Microbiol 65:80–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Liu X, Schadt CW, Zhou J (2006) Microarray-based analysis of subnanogram quantities of microbial community DNAs by using whole-community genome amplification. Appl Environ Microbiol 72:4931–4941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou NY, Fuenmayor SL, Williams PA (2001) nag genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism. J Bacteriol 183:700–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ekokem Environmental Foundation (Finland). We thank Dr. Kimmo Järvinen from Ramboll Finland Ltd. for site introduction and Dr. Ari Laitinen from Doranova Ltd. for providing technical information on the biostimulation treatment. We also thank the Finnish DNA Microarray Centre for the preparation of the functional gene arrays. Dr. Wolfgang Hillen is thanked for supplying the A. calcoaceticus strain ADP1, Dr. Tim Tolker-Nielsen for providing the fluorescently tagged P. putida strain OUS82, and Dr. Timo Pulli for the morphine-specific Fab fragment cDNA. Marjo Öster we thank for her assistance in the PCR amplification of the dsrA genes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mari Nyyssönen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

PCR primers and thermal profiles used for the amplification of the gene probes designed in this study (PDF 8 kb)

Fig. S2

Average PAH concentrations in the creosote-contaminated groundwater during treatment by air sparging and nutrient infiltration. The groundwater samples were recovered from monitoring wells BST1 and BST2 located upstream from the biostimulation treatment zone and monitoring wells BST3, BST4 and BST5 located downstream from it (Fig. 1b). The error bars represent standard deviations between three monitoring wells. a PAH (EPA 16), b naphthalene, c fluorene and d phenanthrene (PDF 7 kb)

Table S3

Specificity of gene probes attached on the functional gene array determined by hybridisation with pure bacterial cultures. The average signal intensities and standard deviations were determined from unnormalised hybridisation signals measured from six replicate spots. The standard deviations between replicate spots are presented in parenthesis (PDF 6 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyyssönen, M., Kapanen, A., Piskonen, R. et al. Functional genes reveal the intrinsic PAH biodegradation potential in creosote-contaminated groundwater following in situ biostimulation. Appl Microbiol Biotechnol 84, 169–182 (2009). https://doi.org/10.1007/s00253-009-2022-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2022-8

Keywords