Skip to main content
Log in

Properties and applications of microbial D-amino acid oxidases: current state and perspectives

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

D-Amino acid oxidase (DAAO) is a biotechnologically relevant enzyme that is used in a variety of applications. DAAO is a flavine adenine dinucleotide-containing flavoenzyme that catalyzes the oxidative deamination of D-isomer of uncharged aliphatic, aromatic, and polar amino acids yielding the corresponding imino acid (which hydrolyzes spontaneously to the α-keto acid and ammonia) and hydrogen peroxide. This enzymatic activity is produced by few bacteria and by most eukaryotic organisms. In the past few years, DAAO from mammals has been the subject of a large number of investigations, becoming a model for the dehydrogenase-oxidase class of flavoproteins. However, DAAO from microorganisms show properties that render them more suitable for the biotechnological applications, such as a high level of protein expression (as native and recombinant protein), a high turnover number, and a tight binding of the coenzyme. Some important DAAO-producing microorganisms include Trigonopsis variabilis, Rhodotorula gracilis, and Fusarium solani. The aim of this paper is to provide an overview of the main biotechnological applications of DAAO (ranging from biocatalysis to convert cephalosporin C into 7-amino cephalosporanic acid to gene therapy for tumor treatment) and to illustrate the advantages of using the microbial DAAOs, employing both the native and the improved DAAO variants obtained by enzyme engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albery WJ, Barlett PN, Bycroft M, Craston DH, Driscoll BJ (1987) Amperometric enzyme electrodes. Part III. A conducting salt electrode for the oxidation of four different flavoenzymes. J Electroanal Chem 218:119–126

    CAS  Google Scholar 

  • Albery WJ, Hutchins JEC, Uttamlal M (1996) An L-amino acid sensor for beer fermentation. J Appl Electrochem 26:243–248

    CAS  Google Scholar 

  • Alonso J, Barredo JL, Díez B, Mellado E, Salto F, Garcia JL, Cortés E (1998) D-amino-acid oxidase gene from Rhodotorula gracilis (Rhodosporium turoloides) ATCC 26217. Microbiology 144:1095–1101

    CAS  PubMed  Google Scholar 

  • Alonso J, Barredo JL, Armisèn P, Díez B, Salto F, Guisán JM, Garcia JL, Cortés E (1999) Engineering the D-amino acid oxidase from Trigonopsis variabilis to facilitate its overproduction in Escherichia coli and its downstream processing by tailor-made metal supports. Enzyme Microb Technol 25:88–95

    CAS  Google Scholar 

  • Beĉka S, Ŝkrob F, Plháĉková K, Kujan P, Holler P, Kyslik P (2003) Cross-linked cell aggregates of Trigonopsis variabilis: D-amino acid oxidase catalyst for oxidation of cephalosporin C. Biotechnol Lett 25:227–233

    PubMed  Google Scholar 

  • Betancor L, Hidalgo A, Fernández-Lorente G, Mateo C, Rodríguez V, Fuentes M, López-Gallego F, Fernández-Lorente R, Guisan JM (2003) Use of physicochemical tools to determine the choice of optimal enzyme: stabilization of D-amino acid oxidase. Biotechnol Prog 19:784–788

    CAS  PubMed  Google Scholar 

  • Brückner H, Lüpke M (1991) Determination of amino acid enantiomers in orange juices by chiral phase capillary gas chromatography. Cromatographia 31:123–128

    Google Scholar 

  • Brückner H, Wittner R, Godel H (1991) Fully automated high-performance liquid chromatographic separation of DL-amino acids derivatized with o-phtaldialdehyde together with N-isobutyryl-cysteine. Cromatographia 32:383–388

    Google Scholar 

  • Brückner H, Westhauser T (2003) Chromatographic determination of L- and D-amino acids in plants. Amino Acids 24:43–55

    PubMed  Google Scholar 

  • Cabri W, Verga R, Cambiaghi S, Bernasconi E (1999) Environmentally friendly production of 7-ACA. Chimica e Industria, 81:461–464

    CAS  Google Scholar 

  • Caldinelli L, Motteran L, Sacchi S, Piubelli L, Boselli A, Mothet JP, Pollegioni L, Pilone MS (2006) Detection of D-amino acids by D-amino acid oxidase. In: Konno R, Brückner H, D’Aniello A, Fisher G, Fujii N, Homma H (eds) D-amino acids: a new frontier in amino acid and protein research—pratical methods and protocols, chapter 2.6. Nova Biomedical Books, New York, pp 135–168

    Google Scholar 

  • Caligiuri A, D’Arrigo P, Rosini E, Tessaro D, Molla G, Servi S, Pollegioni L (2006a) Enzymatic conversion of unnatural amino acids by yeast D-amino acid oxidase. Adv Synth Catal 348:2183–2190

    CAS  Google Scholar 

  • Caligiuri A, D’Arrigo P, Gefflaut T, Molla G, Pollegioni L, Rosini E, Rossi C, Servi S (2006b) Multistep enzyme catalysed deracemisation of 2-naphthyl alanine. Biocatal Biotrans 24:409–413

    CAS  Google Scholar 

  • Cambiaghi S, Tomaselli S, Verga R (1991) Enzymatic process for preparing 7-aminocephalosporin acid and derivatives. European Patent 0496993

  • Casalin P, Pollegioni L, Curti B, Pilone MS (1991) A study on apoenzyme from Rhodotorula gracilis D-amino acid oxidase. Eur J Biochem 197:513–517

    CAS  PubMed  Google Scholar 

  • Curti B, Ronchi S, Pilone MS (1992) D- and L- amino acid oxidases. In: Müller F (ed) Chemistry and biochemistry of flavoenzymes, vol. III. CRC Press, Boca Raton, pp 69–94

    Google Scholar 

  • D'Aniello A, Vetere A, Fisher GH, Cusano G, Chavez M, Petrucelli L (1992) Presence of D-alanine in proteins of normal and Alzheimer human brain. Brain Res 592:44–48

    CAS  PubMed  Google Scholar 

  • David HL, Clavel-Seres S, Clement F, Lazlo A, Rastogi N (1989) Methionine as methyl-group donor in the synthesis of Mycobacterium avium envelope lipids, and its inhibition by D,L-methionine, D-norleucine and D,L-norleucine. Acta Leprol 7:77–80

    PubMed  Google Scholar 

  • Deutch CE (2004) Oxidation of 3,4-dehydro-D-proline and other D-amino acid analogues by D-alanine dehydrogenase from Escherichia coli. FEMS Microbiol Lett 238:383–389

    CAS  PubMed  Google Scholar 

  • Dib I, Slavica A, Riethorst W, Nidetzky B (2006) Thermal inactivation of D-amino acid oxidase from Trigonopsis variabilis occurs via three parallel paths of irreversible denaturation. Biotechnol Bioeng 94:645–654

    CAS  PubMed  Google Scholar 

  • Dib I, Stanzer D, Nidetzky B (2007) Trigonopsis variabilis D-amino acid oxidase: control of protein quality and opportunities for biocatalysis through production in Escherichia coli. Appl Environ Microbiol 73:331–333

    CAS  PubMed  Google Scholar 

  • Dominguez R, Serra B, Revieo J, Pingarron JM (2001) Chiral analysis of amino acids using electrochemical composite bienzyme biosensors. Anal Biochem 298:275–282

    CAS  PubMed  Google Scholar 

  • Fang J, Sawa T, Akaike T, Maeda H (2002) Tumor-targeted delivery of polyethylene glycol-conjugated D-amino acid oxidase for antitumor theraphy via enzymatic generation of hydrogen peroxide. Cancer Res 62:3138–3143

    CAS  PubMed  Google Scholar 

  • Fang J, Sawa T, Akaike T, Greish K, Maeda H (2004) Enhancement of chemotherapeutic response of tumor cells by a heme oxygenase inhibitor, pegylated zinc protoporphyrin. Int J Cancer 109:1–8

    CAS  PubMed  Google Scholar 

  • Fantinato S, Pollegioni L, Pilone MS (2001) Engineering, expression and purfication of a His-tagged chimeric D-amino acid oxidase from Rhodotorula gracilis. Enzyme Microb Technol 29:407–412

    Google Scholar 

  • Faotto L, Pollegioni L, Ceciliani F, Ronchi S, Pilone MS (1995) The primary structure of D-amino acid oxidase from Rhodotorula gracilis. Biotechnol Lett 17:193–198

    CAS  Google Scholar 

  • Fischer L (1998) D-amino acid oxidase in biotechnology. Recent Res Devel Microbiol 2:295–317

    CAS  Google Scholar 

  • Friedman M (1999) Chemistry, nutrition, and microbiology of D-amino acids. J Agric Food Chem 47:3457–3479

    CAS  PubMed  Google Scholar 

  • Furuya K, Matsuda A (1995) Trigonopsis transformant producing D-amino acid oxidase. United States Patent US5453374

  • Gabler M, Fischer L (1999) Production of a new D-amino acid oxidase from the fungus Fusarium oxysporum. Appl Environ Microbiol 65:3750–3753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gabler M, Hensel M, Fischer L (2000) Detection and substrate selectivity of new microbial D-amino acid oxidases. Enzyme Microb Technol 27:605–611

    CAS  PubMed  Google Scholar 

  • Gandolfi I, Palla G, Delprato L, De Nisco F, Marchelli R, Salvadori C (1992) D-amino acids in milk as related to heat treatments and bacterial activity. J Food Sci 57:377–379

    CAS  Google Scholar 

  • Geueke B, Weckbecker A, Hummel W (2007) Overproduction and characterization of a recombinant D-amino acid oxidase from Arthrobacter protophormiae. Appl Microbiol Biotechnol 74:1240–1247

    CAS  PubMed  Google Scholar 

  • Gonzalez FJ, Montes J, Martin F, Lopez MC, Ferminan E, Catalan J, Galan MA, Dominguez A (1997) Molecular cloning of TvDAO1, a gene encoding a D-amino acid oxidase from Trigonopsis variabilis and its expression in Saccharomyces cerevisiae and Kluyveromyces lactis. Yeast 13:1399–1408

    CAS  PubMed  Google Scholar 

  • Hamase K, Konno R, Morikawa A, Zaitsu K (2005) Sensitive determination of D-amino acids in mammals and the effect of D-amino acid oxidase activity on their amount. Biol Pharm Bull 28:1578–1584

    CAS  PubMed  Google Scholar 

  • Harbron S (2002) Hybridization assay for detecting a single-stranded target nucleic acid in which excess probe is destroyed. United States Patent US6423492

  • Hörner R, Wagner F, Fischer L (1996) Inducion of the D-amino acid oxidase from Trigonopsis variabilis. Appl Environ Microbiol 62:2106–2110

    PubMed  PubMed Central  Google Scholar 

  • Huber F, Chauvetee R, Jackson B (1972) Preparative methods for 7-aminocephalosporanic acid and 6-aminopenicillanic acid. In: Flynn E (ed) Cephalosporins and penicillins, chemistry and biology. Academic, New York, pp 27–48

    Google Scholar 

  • Huber FM, Vicenzi JT, Tietz AJ (1992) High yielding culture conditions for the biosynthesis of D-amino acid oxidase by Trigonopsis variabilis. Biotechnol Lett 14:195–200

    CAS  Google Scholar 

  • Hwang TS, Fu HM, Lin LL, Hsu WH (2000) High-level expression of Trigonopsis variabilis D-amino acid oxidase in Escherichia coli using lactose as inducer. Biotechnol Lett 22:655–658

    CAS  Google Scholar 

  • Inaba Y, Mizukami K, Hamada-Sato N, Kobayashi T, Imada C, Watanabe E (2003) Development of a D-alanine sensor for the monitoring of a fermentation using the improved selectivity by the combination of D-amino acid oxidase and pyruvate oxidase. Biosens Bioelectron 19:423–431

    CAS  PubMed  Google Scholar 

  • Isoai A, Kimura H, Reichert A, Schorgendorfer K, Nikaido K, Tohda H, Giga-Hama Y, Mutoh N, Kumagai H (2002) Production of D-amino acid oxidase (DAO) of Trigonopsis variabilis in Schizosaccharomyces pombe and the characterization of biocatalysts prepared with recombinant cells. Biotechnol Bioeng 80:22–32

    CAS  PubMed  Google Scholar 

  • Isogai T, Ono H, Ishitani Y, Kojo H, Ueda Y, Kohsaka M (1990) Structure and expression of cDNA for D-amino acid oxidase active against cephalosporin C from Fusarium solani. J Biochem (Tokyo) 108:1063–1069

    CAS  Google Scholar 

  • Isogai T, Ono H, Kojo H (1998) D-amino acid oxidase of F. solani and methods for its recombinant production. United States Patent US5773272

  • Job V, Marcone L, Pilone MS, Pollegioni L (2002) Glycine oxidase from Bacillus subtilis: characterization of a new flavoprotein J. Biol. Chem. 277:6985–6993

    CAS  Google Scholar 

  • Kacaniklic V, Johansson K, Marko-Varga G, Gorton L, Jönsson-Pettersson G, Csöregi E (1994) Amperometric biosensors for detection of L- and D-amino acids based on coimmobilized peroxidase and L- and D- amino acid oxidase in carbon paste electrodes. Electroanalysis 6:381–390

    CAS  Google Scholar 

  • Katsuki H, Nonaka M, Shirakawa H, Kume T, Akaike A (2004) Endogenous D-serine is involved in induction of neuronal death by N-methyl-D-aspartate and simulated ischemia in rat cerebrocortical slices. J Pharmacol Exp Ther 311:836–844

    CAS  PubMed  Google Scholar 

  • Kawazoe T, Tsuge H, Pilone MS, Fukui K (2006) Crystal structure of human DAAO: context-dependent variability of the backbone conformation of the VAAGL hydrophobic stretch located at the si-face of the flavin ring. Protein Sci 15:2708–2717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khang Y, Kim I, Hah Y, Hwangbo J, Kang K (2003) Fusion protein of Vitreoscilla hemoglobin with D-amino acid oxidase enhances activity and stability of biocatalyst in the bioconversion process of cephalosporin C. Biotechnol Bioeng 82:480–488

    CAS  PubMed  Google Scholar 

  • Kishore G, Vaidyanathan CS (1976) Purification and properties of D-amino acid oxidase of Aspergillus niger. Indian J Biochem Biophys 13:216–222

    CAS  PubMed  Google Scholar 

  • Komatsu K, Sugiura K, Matsuda A, Yamamoto K (1988) D-amino acid oxidase gene. Japan Patent 63071180

  • Krebs HA (1935) Metabolism of amino-acids: deamination of amino-acids. Biochem J 29:1620–1644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kubicek-Pranz EM, Rohr M (1985) D-amino acid from the yeast Trigonopsis variabilis. J Appl Biochem 7:104–113

    CAS  PubMed  Google Scholar 

  • Kulys J, Schmid RD (1991) Bienzyme sensors based on chemically modified electrodes. Biosens Bioelectron 6:43–48

    CAS  Google Scholar 

  • Lin L, Chien HR, Wang W, Hwang T, Fu H, Hsu W (2000) Expression of Trigonopsis variabilis D-amino acid oxidase gene in Escherichia coli and characterization of its inactive mutants. Enzyme Microb Technol 27:482–491

    CAS  PubMed  Google Scholar 

  • Lopez-Gallego F, Batencor L, Hidalgo A, Mateo C, Fernandez-Lafuente R, Guisan JM (2005) One-pot conversion of cephalosporin C to 7-aminocephalosporanic acid in the absence of hydrogen peroxide. Adv Synth Catal 347:1804–1810

    CAS  Google Scholar 

  • Luo H, Yu H, Li Q, Shen Z (2004a) Cloning and co-expression of D-amino acid oxidase and glutaryl-7-aminocephalosporanic acid acylase genes in Escherichia coli. Enzyme Microb Technol 35:514–518

    CAS  Google Scholar 

  • Luo H, Li Q, Yu H, Shen Z (2004b) Construction and application of fusion proteins of D-amino acid oxidase and glutaryl-7-aminocephalosporanic acid acylase for direct bioconversion of cephalosporin C to 7-aminocephalosporanic acid. Biotechnol Lett 26:939–945

    CAS  PubMed  Google Scholar 

  • Marchelli R, Dossena A, Palla G, Audhuy-Peaudecerf M, Lefeuvre S, Carnevali P, Freddi M (1992) D-amino acids in reconstituted infant formula: a comparison between conventional and microwave heating. J Sci Food Agric 59:217–226

    CAS  Google Scholar 

  • Marchelli R, Dossena A, Palla G (1996) The potential of enantioselective analysis as a quality control tool. Trends Food Sci Technol 7:113–119

    CAS  Google Scholar 

  • Martineau M, Baux G, Mothet JP (2006) D-Serine signalling in the brain: friend and foe. Trends Neurosci 29:481–491

    CAS  PubMed  Google Scholar 

  • Massey V, Hemmerich P (1980) Active-site probes of flavoproteins. Biochem Soc Trans 8:246–257

    CAS  PubMed  Google Scholar 

  • Matsuda A, Matsuyama K, Yamamoto K, Ichikawa S, Komatsu KI (1987) Cloning and characterization of the genes for two distinct cephalosporin acylases from Pseudomonas strain. J Bacteriol 169:5815–5820

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mattevi A, Vanoni MA, Todone F, Rizzi M, Teplyakov A, Coda A, Bolognesi M, Curti B (1996) Crystal structure of D-amino acid oxidase: a case of active site mirror-image convergent evolution with flavocytochrome b2. Proc Natl Acad Sci USA 93:7496–7501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizutani H, Miyahara I, Hirotsu K, Nishina Y, Shiga K, Setoyama C, Miura R (1996) Three-dimensional structure of porcine kidney D-amino acid oxidase at 3.0 Å resolution. J Biochem (Tokyo) 120:14–17

    CAS  Google Scholar 

  • Molla G, Vegezzi C, Pilone MS, Pollegioni L (1998) Overexpression in Escherichia Coli of a recombinant chimeric Rhodotorula Gracilis D-amino acid oxidase. Protein Expr Purif 14:289–294

    CAS  PubMed  Google Scholar 

  • Molla G, Motteran L, Piubelli L, Pilone MS, Pollegioni L (2003) Regulation of D-amino acid oxidase expression in the yeast Rhodotorula gracilis. Yeast 20:1061–1069

    CAS  PubMed  Google Scholar 

  • Mörtl M, Diederichs K, Welte W, Molla G, Motteran L, Andriolo G, Pilone MS, Pollegioni L (2004) Structure-function correlation in glycine oxidase from Bacillus subtilis. J Biol Chem 279:29718–29727

    PubMed  Google Scholar 

  • Mosbach K, Szwajcer E (1991) A D-amino acid oxidase and method for isolation thereof. European Patent EP0211033B1

  • Mothet JP, Parent AT, Wolosker H, Brady RO Jr, Linden DJ, Ferris CD, Rogawaski MA, Snyder SH (2000) D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA 97:4926–4931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nigam VK, Kundu S, Ghosh P (2005) Single-step conversion of cephalosporin C to 7-aminocephalosporanic acid by free and immobilized cells of Pseudomonas diminuta. Appl Biochem Biotechnol 126:13–21

    CAS  PubMed  Google Scholar 

  • Obzansky DM, Rabin BR, Simons DM, Tseng SY, Severino DM, Eggelte H, Fisher M, Harbron S, Stout RW, Di Paolo MJ (1991) Sensitive, colorimetric enzyme amplification cascade for determination of alkaline phosphatase and application of the method to an immunoassay of thyrotropin. Clin Chem 37:1513–1518

    CAS  PubMed  Google Scholar 

  • Oguri S, Nomura M, Fujita Y (2005) A new strategy for the selective determination of D-amino acids: enzymatic and chemical modifications for pre-column derivatization. J Chromatogr A 1078:1–58

    Google Scholar 

  • Olsiewski PJ, Kaczorowski GJ, Walsh C (1980) Purification and properties of D-amino acid dehydrogenase, an inducible membrane-bound iron-sulfur flavoenzyme from Escherichia coli B. J Biol Chem 255:4487–4494

    CAS  PubMed  Google Scholar 

  • Parkin K, Huiltin HO (1979) Immobilization and characterization of D-amino acid oxidase. Biotechnol Bioeng 21:939–953

    CAS  PubMed  Google Scholar 

  • Perotti ME, Pollegioni L, Pilone MS (1991) Expression of D-amino acid oxidase in Rhodotorula Gracilis under induction conditions: a biochemical and cytochemical study. Eur J Cell Biol 55:104–113

    CAS  PubMed  Google Scholar 

  • Pilone Simonetta M, Vanoni MA, Casalin P (1987) Purification and properties of D-amino acid oxidase, an inducible flavoenzyme from Rhodotorula gracilis. Biochim Biophys Acta 914:136–142

    Google Scholar 

  • Pilone Simonetta M, Pollegioni L, Casalin P, Curti B, Ronchi S (1989a) Properties of D-amino-acid oxidase from Rhodotorula gracilis. Eur J Biochem 180:199–204

    CAS  PubMed  Google Scholar 

  • Pilone Simonetta M, Verga R, Fretta A, Hanozet GM (1989b) Induction of D-amino-acid oxidase by D-alanine in Rhodotorula gracilis grown in defined medium. J Gen Microbiol 135:593–600

    Google Scholar 

  • Pilone MS, Pollegioni L (2002) D-amino acid oxidase as an industrial biocatalyst. Biocatal Biotransform 20:145–159

    CAS  Google Scholar 

  • Pollegioni L, Pilone MS (1992) Purification of Rhodotorula gracilis D-amino acid oxidase. Protein Expr Purif 3:165–167

    CAS  PubMed  Google Scholar 

  • Pollegioni L, Falbo A, Pilone MS (1992) Specificity and kinetics of Rhodotorula gracilis D-amino acid oxidase. Biochim Biophys Acta 1120:11–16

    CAS  PubMed  Google Scholar 

  • Pollegioni L, Butò S, Tischer W, Ghisla S, Pilone MS (1993a) Characterization of D-amino acid oxidase from Trigonopsis variabilis. Biochem Mol Biol Int 31:709–717

    CAS  PubMed  Google Scholar 

  • Pollegioni L, Langkau B, Tischer W, Ghisla S, Pilone MS (1993b) Kinetic mechanism of D-amino acid oxidases from Rhodotorula gracilis and Trigonopsis variabilis. J Biol Chem 268:13850–13857

    CAS  PubMed  Google Scholar 

  • Pollegioni L, Fukui K, Massey V (1994) Studies on the kinetic mechanism of pig kidney D-amino acid oxidase by site-directed mutagenesis of tyrosine 224 and tyrosine 228. J Biol Chem. 269:31666–31673

    CAS  PubMed  Google Scholar 

  • Pollegioni L, Molla G, Campaner S, Martegani E, Pilone MS (1997) Cloning, sequencing and expression in E. coli of a D-amino acid oxidase cDNA from Rhodotorula gracilis active on cephalosporin C. J Biotechnol 58:115–123

    CAS  PubMed  Google Scholar 

  • Pollegioni L, Diederichs K, Molla G, Umhau S, Welte W, Ghisla S, Pilone MS (2002) Yeast D-amino acid oxidase: structural basis of its catalytic properties. J Mol Biol 324:535–546

    CAS  PubMed  Google Scholar 

  • Pollegioni L, Iametti S, Fessas D, Caldinelli L, Piubelli L, Barbiroli A, Pilone MS, Bonomi F (2003) Contribution of the dimeric state to the thermal stability of the flavoprotein D-amino acid oxidase. Protein Sci 12:1018–1029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pollegioni L, Caldinelli L, Molla G, Sacchi S, Pilone MS (2004) Catalytic properties of D-amino acid oxidase in cephalosporin C bioconversion: a comparison between proteins from different sources. Biotechnol Prog 20:467–473

    CAS  PubMed  Google Scholar 

  • Pollegioni L, Lorenzi S, Rosini E, Marcone GL, Molla G, Verga R, Cabri W, Pilone MS (2005) Evolution of an acylase active on cephalosporin C. Protein Sci 14:3064–3076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pollegioni L, Piubelli L, Sacchi S, Pilone MS, Molla G (2007a) Physiological functions of D-amino acid oxidases: from yeast to humans. Cell Mol Life Sci 64:1373–1394

    CAS  PubMed  Google Scholar 

  • Pollegioni L, Sacchi S, Caldinelli L, Boselli A, Pilone MS, Piubelli L, Molla G (2007b) Engineering the properties of D-amino acid oxidases by a rational and a directed evolution approach. Curr Protein Pept Sci 8:600–618

    CAS  PubMed  Google Scholar 

  • Porter DJ, Voet JG, Bright HJ (1977) Mechanistic features of the D-amino acid oxidase reaction studied by double stopped flow spectrophotometry. J Biol Chem 252:4464–4473

    CAS  PubMed  Google Scholar 

  • Rabin BR, Harbron S, Eggelte HJ, Hollaway MH, Holloway A (1995) Amplification assay for hydrolase enzymes. United States Patent US5445942

  • Raunio RP, Jenkins WT (1973) D-alanine oxidase from Escherichia coli: localization and induction by L-alanine. J Bacteriol 115:560–566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sacchi S, Pollegioni L, Pilone MS, Rossetti C (1998) Determination of D-amino acids using a D-amino acid oxidase biosensor with spectrophotometric detection. Biotech Techn 12:149–153

    CAS  Google Scholar 

  • Sacchi S, Lorenzi S, Molla G, Pilone MS, Rossetti C, Pollegioni L (2002) Engineering the substrate specificity of D-amino acid oxidase. J Biol Chem 277:27510–27516

    CAS  PubMed  Google Scholar 

  • Sacchi S, Rosini E, Molla G, Pilone MS, Pollegioni L (2004) Modulating D-amino acid oxidase substrate specificity: production of an enzyme for analytical determination of all D-amino acids by directed evolution. Protein Eng Des Sel 17:517–525

    CAS  PubMed  Google Scholar 

  • Sakai Y, Yurimoto H, Matsuo H, Kato N (1998) Regulation of peroxisomal proteins and organelle proliferation by multiple carbon sources in the methylotrophic yeast Candida boidinii. Yeast 14:1175–1187

    CAS  PubMed  Google Scholar 

  • Sarkar P, Tothill IE, Setford SJ, Turner APF (1999) Screen-printed amperometric biosensors for the rapid measurement of L- and D-amino acids. Analyst 124:865–870

    CAS  PubMed  Google Scholar 

  • Sasamura T, Matsuda A, Kokuba Y (1999) Effects of D-methionine-containing solution on tumor cell growth in vitro. Arzneimittelforschung 49:541–543

    CAS  PubMed  Google Scholar 

  • Sasamura T, Matsuda A, Kokuba Y (2002) Determination of D-amino acid oxidase activity in tumor cells. Ann Clin Biochem 39:595–598

    CAS  PubMed  Google Scholar 

  • Schräder T, Andreesen JR (1996) Properties and chemical modification of D-amino acid oxidase from Trigonopsis variabilis. Arch Microbiol 165:41–47

    Google Scholar 

  • Setoyama C, Miura R, Nishina Y, Shiga K, Mizutani H, Miyahara I, Hirotsu K (1996) Crystallization of expressed porcine kidney D-amino acid oxidase and preliminary X-ray crystallographic characterization. J Biochem (Tokyo) 119:1114–1117

    CAS  Google Scholar 

  • Settembre EC, Dorrestein PC, Park JH, Augustine AM, Begley TP, Ealick SE (2003) Structural and mechanistic studies on ThiO, a glycine oxidase essential for thiamin biosynthesis in Bacillus subtilis. Biochemistry 42:2971–2981

    CAS  PubMed  Google Scholar 

  • Sikora L, Marzluf GA (1982) Regulation of L-amino acid oxidase and of D-amino acid oxidase in Neurospora crassa. Mol Gen Genet 186:33–39

    CAS  PubMed  Google Scholar 

  • Stefan RI, Nejem RM, van Staden JF, Aboul-Enein HY (2003a) Biosensors for the enantioselective analysis of pipecolic acid. Sens Actuators B Chem 94:271–275

    CAS  Google Scholar 

  • Stefan RI, Bokretsion RG, van Staden JF, Aboul-Enein HY (2003b) Simultaneous determination of L- and D-carnitine using a sequential injection analysis/amperometric biosensors system. J Pharm Biomed Anal 33:323–328

    CAS  PubMed  Google Scholar 

  • Stefan RI, Bokretsion RG, van Staden JF, Aboul-Enein HY (2003c) Simultaneous determination of L- and D-methotrexate using a sequential injection analysis/amperometric biosensors system. Biosens Bioelectron 19:261–267

    CAS  PubMed  Google Scholar 

  • Stegman LD, Zheng H, Neal ER, Ben-Yoseph O, Pollegioni L, Pilone MS, Ross BD (1998) Induction of cytotoxic oxidative stress by D-alanine in brain tumor cells expressing Rhodotorula gracilis D-amino acid oxidase: a cancer gene therapy strategy. Hum Gene Ther 9:185–193

    CAS  PubMed  Google Scholar 

  • Sulter GJ, Waterham HR, Goodman JM, Veenhuis M (1990) Proliferation and metabolic significance of peroxisomes in Candida boidinii during growth on D-alanine or oleic acid as the sole carbon source. Arch Microbiol 153:485–489

    CAS  PubMed  Google Scholar 

  • Tan Q, Song Q, Wei D (2006) Single-pot conversion of cephalosporin C to 7-aminocephalosporanic acid using cell-bound and support-bound enzymes. Enzyme Microb Technol 39:1166–1172

    CAS  Google Scholar 

  • Tishkov VI, Khoronenkova SV (2005) D-Amino acid oxidase: structure, catalytic mechanism, and practical application. Biochemistry (Moscow) 70:40–54

    CAS  Google Scholar 

  • Trampitsch C, Slavica A, Riethorst W, Nidetzky B (2005) Reaction of Trigonopsis variabilis D-amino acid oxidase with 2,6-dichloroindophenol: kinetic characterisation and development of an oxygen-independent assay of the enzyme activity. J Mol Catal B Enzym 32:271–278

    CAS  Google Scholar 

  • Trost EM, Fischer L (2002) Minimization of by-product formation during D-amino acid oxidase catalyzed racemate resolution of D/L-amino acids. J Mol Catal B Enzym 19–20:189–195

    Google Scholar 

  • Umhau S, Pollegioni L, Molla G, Diederichs K, Welte W, Pilone MS, Ghisla S (2000) The x-ray structure of D-amino acid oxidase at very high resolution identifies the chemical mechanism of flavin-dependent substrate dehydrogenation. Proc Natl Acad Sci U S A 97:12463–12468

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Staden JF, Stefan RI, Aboul-Enein HY (2000) Amperometric biosensor based on D-aminoacid oxidase for the R-perindopril assay. Fresenius J Anal Chem 367:178–180

    PubMed  Google Scholar 

  • Váradi M, Adányi N, Szabó EE, Trummer N (1999) Determination of the ratio of D- and L-amino acids in brewing by an immobilised amino acid oxidase enzyme reactor coupled to amperometric detection. Biosens Bioelectron 14:335–340

    PubMed  Google Scholar 

  • Voss K, Galensa R (2000) Determination of L- and D-amino acids in foodstuffs by coupling of high-performance liquid chromatography with enzyme reactors. Amino Acids 18:339–352

    CAS  PubMed  Google Scholar 

  • Wei CJ, Huang JC, Tsai YP (1989) Study on the synthesis of D-amino acid oxidase in Trigonopsis variabilis in continuous culture. Biotechnol Bioeng 34:570–574

    CAS  PubMed  Google Scholar 

  • Wong B, Shen YQ (1990) Enzymatic production of 7-amino cephalosporanic acid. World Intellectual Property Organization WO9012110A1

  • Wong B, Shen YQ (1997) Production of 7-amino cephalosporanic acid with D-amino acid oxidase and deacylase. United States Patent US5618687

  • Wu X, van Wie BJ, Kidwell DA (2004) An enzyme electrode for amperometric measurement of D-amino acids. Biosens Bioelectron 20:879–886

    CAS  PubMed  Google Scholar 

  • Yao T, Wasa T (1998) HPLC detection of L- and D-amino acids by use of immobilized enzyme electrodes as detectors. Anal Chim Acta 209:259–264

    Google Scholar 

  • Yasuda Y, Tochikubo K (1985) Germination-initiation and inhibitory activities of L- and D-alanine analogues for Bacillus subtilis spores. Modification of methyl group of L- and D-alanine. Microbiol Immunol 29:229–241

    CAS  PubMed  Google Scholar 

  • Yu J, Li DY, Zhang YJ, Yang S, Li RB, Yuan ZY (2002) High expression of Trigonopsis variabilis D-amino acid oxidase in Pichia pastoris. J Mol Catal, B Enzym 18:291–297

    CAS  Google Scholar 

  • Yurimoto H, Hasegawa T, Sakai Y, Kato N (2000) Physiological role of the D-amino acid oxidase gene, DAO1, in carbon and nitrogen metabolism in the methylotrophic yeast Candida boidinii. Yeast 16:1217–1227

    CAS  PubMed  Google Scholar 

  • Yurimoto H, Hasegawa T, Sakai Y, Kato N (2001) Characterization and high-level production of D-amino acid oxidase in Candida boidinii. Biosci Biotechnol Biochem 65:627–633

    CAS  PubMed  Google Scholar 

  • Zheng H, Wang X, Chen J, Zhu K, Zhao Y, Yang Y, Yang S, Jiang W (2006) Expression, purification, and immobilization of His-tagged D-amino acid oxidase of Trigonopsis variabilis in Pichia pastoris. Appl Microbiol Biotechnol 70:683–689

    CAS  PubMed  Google Scholar 

  • Zheng H, Zhu T, Chen J, Zhao Y, Jiang W, Zhao G, Yang S, Yang Y (2007) Construction of recombinant Escherichia coli D11/pMSTO and its use in enzymatic preparation of 7-aminocephalosporanic acid in one-pot. J Biotechnol 129:400–405

    CAS  PubMed  Google Scholar 

  • Zhujun Z, Zhilong G, Wangbai M (1995) An enzyme-based fiber optic biosensor for determination of D-amino acids in serum. Microchem J 52:131–138

    Google Scholar 

  • Zwart KB, Overmars EH, Harder W (1983) Significance of microbodies in the metabolism of L-aspartate in Candida utilis. FEMS Microbiol Lett 19:273–279

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from FAR to G. Molla, M. S. Pilone, and L. Pollegioni and from Fondazione CARIPLO to L. Pollegioni. We apologize to those whose work we were unable to cite owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loredano Pollegioni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollegioni, L., Molla, G., Sacchi, S. et al. Properties and applications of microbial D-amino acid oxidases: current state and perspectives. Appl Microbiol Biotechnol 78, 1–16 (2008). https://doi.org/10.1007/s00253-007-1282-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1282-4

Keywords

Enzymes

Navigation