Skip to main content
Log in

Modelling the reaction course of N-acetylneuraminic acid synthesis from N-acetyl-d-glucosamine—new strategies for the optimisation of neuraminic acid synthesis

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, a model describing the complete enzyme catalysed synthesis of N-acetylneuraminic acid (Neu5Ac) from N-acetyl-d-glucosamine (GlcNAc) is presented. It includes the combined reaction steps of epimerisation from GlcNAc to N-acetyl-d-mannosamine (ManNAc) and the aldol condensation of ManNAc with sodium pyruvate yielding Neu5Ac. The model is expedient to predict the reaction course for various initial and feed concentrations and therefore to calculate reaction times and yields. The equilibrium constants calculated from the kinetic constants via the Haldane relationship correspond with experimental values very well (0.26 calculated and 0.24 experimental value for the epimerisation, 27.4 l mol−1 calculated and 28.7 l mol−1 experimental for the aldol condensation). The actual relevance of the model is shown by a scale-up. Using the model, an optimisation of reaction conditions in consideration of different targets is possible. Exemplarily, it is presented how the optimal ratio of the two enzymes in the reaction can be determined and how the composition of the reaction solution in a fed-batch reactor can be designed to meet downstream processing needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Augé C, David S, Gautheron C (1984) Synthesis with immobilized enzyme of the most important sialic acid. Tetrahedron Lett 25:4663–4664

    Article  Google Scholar 

  • Baumann W, Freidenreich J, Weisshaar G, Brossmer R, Friebolin H (1989) Reversible cleavage of sialic acids with aldolase—h-1-nmr investigations on stereochemistry, kinetics and mechanism. Bio Chem Hoppe-Seyler 370:141–149

    Article  CAS  Google Scholar 

  • Bednarski MD, Chenault HK, Simon ES, Whitesides GM (1987) Membrane-enclosed enzymatic catalysis (Meec)—a useful, practical new method for the manipulation of enzymes in organic-synthesis. J Am Chem Soc 109:1283–1285

    Article  CAS  Google Scholar 

  • Benzingnguyen L, Perry MB (1978) Stepwise synthesis of N-acetylneuraminic acid and N-acetyl[1-C-13]neuraminic acid. J Org Chem 43:551–554

    Article  CAS  Google Scholar 

  • Blayer S, Woodley JM, Dawson MJ, Lilly MD (1999) Alkaline biocatalysis for the direct synthesis of N-acetyl-d-neuraminic acid (Neu5Ac) from N-acetyl-d-glucosamine (GlcNAc). Biotechnol Bioeng 66:131–136

    Article  CAS  Google Scholar 

  • Bruggink A, Schoevaart R, Kieboom T (2003) Concepts of nature in organic synthesis: cascade catalysis and multistep conversions in concert. Org Process Res Dev 7:622–640

    Article  CAS  Google Scholar 

  • Carroll PM, Cornforth JW (1960) Preparation of N-acetylneuraminic acid from N-acetyl-d-mannosamine. Biochim Biophys Acta 39:161–162

    Article  CAS  Google Scholar 

  • Comb DG, Roseman S (1958) Composition and enzymatic synthesis of N-acetylneuraminic acid (sialic acid). J Am Chem Soc 80:497–499

    Article  CAS  Google Scholar 

  • Cornish-Bowden A (2004) Fundamentals of enzyme kinetics. Portland, London

    Google Scholar 

  • Danishefsky SJ, DeNinno MP (1986) The total synthesis of N-acetylneuraminic acid (NANA): a remarkable hydroxylation of a (Z)-enoate. J Org Chem 51:2615–2617

    Article  CAS  Google Scholar 

  • Dawson MJ, Noble D, Mahmoudian M (2000) Process for the preparation of N-acetylneuraminic acid, US 6156544

  • Ghosh S, Roseman S (1965) The sialic acids. J Biol Chem 240:1531–1536

    PubMed  CAS  Google Scholar 

  • Kim M-J, Hennen WJ, Sweers HM, Wong C-H (1988) Enzymes in carbohydrate synthesis: N-acetylneuraminic acid aldolase catalysed reactions and preparation of N-acetyl-2-deoxy-d-neuraminic acid derivatives. J Am Chem Soc 110:6481–6486

    Article  CAS  Google Scholar 

  • Koizumi S, Tabata K, Endo T, Ozaki A (2001) Process for producing N-acetylneuraminic acid, EP 10181230

  • Koizumi S, Tabata K, Endo T, Ozaki A (2005) N-acetylglucosamine 2-epimerase and DNA encoding the same, US 6946281

  • Kragl U, Gygax D, Ghisalba O, Wandrey C (1991a) Enzymatic two-step synthesis of N-acetyl-neuraminic acid in the enzyme membrane reactor. Angew Chem Int Ed Engl 30:827–828

    Article  Google Scholar 

  • Kragl U, Wandrey C, Ghisalba O, Gygax D (1991b) Enzymatic process for preparing N-acetylneuraminic acid, US 5071750

  • Kuhn R, Brossmer R (1958) Zur konfiguration der lactaminsäure. Justus Liebigs Ann Chem 616:221–225

    Article  CAS  Google Scholar 

  • Lee J-O, Yi J-K, Lee S-G, Takahashi S, Kim B-G (2004) Production of N-acetylneuraminic acid from N-acetylglucosamine and pyruvate using recombinant human renin binding protein and sialic acid aldolase in one pot. Enzyme Microb Technol 2–3:121–125

    Article  CAS  Google Scholar 

  • Lye GJ, Dalby PA, Woodley JM (2002) Better biocatalysis faster: new tools for the implementation of biocatalysis in organic synthesis. Org Process Res Dev 6:434–440

    Article  CAS  Google Scholar 

  • Mahmoudian M, Noble D, Drake CS, Middleton RF, Montgomery DS, Piercy JE, Ramlakhan D, Todd M, Dawson MJ (1997) An efficient process for production of N-acetylneuraminic acid using N-acetylneuraminic acid aldolase. Enzyme Microb Technol 20:393–400

    Article  CAS  Google Scholar 

  • Maru I, Ohta Y, Murata K, Tsukada Y (1996) Molecular cloning and identification of N-acyl-d-glucosamine 2-epimerase from porcine kidney as a renin-binding protein. J Biol Chem 271:16294–16299

    Article  CAS  Google Scholar 

  • Maru I, Ohnishi J, Ohta Y, Tsukada Y (1998) Simple and large-scale production of N-acetylneuraminic acid from N-acetyl-d-glucosamin and pyruvate using N-acyl-d-glucosamine 2-epimerase and N-acetylneuraminate lyase. Carbohydr Res 306:575–578

    Article  CAS  Google Scholar 

  • Maru I, Ohnishi J, Ohta Y, Tsukada Y (2002) Why is sialic acid attracting interest now? Complete enzymatic synthesis of sialic acid with N-acylglucosamine 2-epimerase. J Biosci Bioeng 93:258–265

    Article  CAS  Google Scholar 

  • Ohta Y, Tsukada Y (1995) Method for preparing N-acetylneuraminic acid by N-acetylneuraminic acid lyase at a pH of 10–12, US 5472860

  • Samland AK, Sprenger GA (2006) Microbial aldolases C-C bonding enzymes—unknown treasures and new developments. Appl Microbiol Biotechnol 71:253–264

    Article  CAS  Google Scholar 

  • Schauer R (1982) Sialic acids: chemistry, metabolism and function. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Simon ES, Bednarski MD, Whitesides GM (1988) Synthesis of CMP-NeuAc from N-Acetylglucosamine: generation of CTP from CMP using adenylate kinase. J Am Chem Soc 110:7159–7163

    Article  CAS  Google Scholar 

  • Tabata K, Koizumi S, Endo T, Ozaki A (2002) Production of N-acetyl-d-neuraminic acid by coupling bacteria expressing N-acetyl-d-glucosamine 2-epimerase and N-acetyl-d-neuraminic acid synthetase. Enzyme Microb Technol 30:327–333

    Article  CAS  Google Scholar 

  • Tallman DE, Leussing DL (1969) Pyruvate dimerization catalyzed by nickel(II) and zinc(II). I. Equilibrium with nickel (II) and zinc (II). J Am Chem Soc 91:6253–6256

    Article  CAS  Google Scholar 

  • Uchida Y, Tsukada Y, Sugimori T (1984) Purification and properties of N-acetylneuraminate lyase from Escherichia coli. J Biochem 96:507–522

    Article  CAS  Google Scholar 

  • Vasic-Racki D, Kragl U, Liese A (2003) Benefits of enzyme kinetics modelling. Chem Biochem Eng Q 17:7–18

    CAS  Google Scholar 

  • von Itzstein M, Wu W-Y, Kok GP, Pegg MS, Dyason JC, Jin B, Phan TV, Smythe ML, White HF, Oliver SW, Colman PM, Varghese JN, Ryan DM, Woods JM, Bethell RC, Hotham VJ, Cameron JM, Penn CR (1993) Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363:418–423

    Article  Google Scholar 

  • von Korff RW (1964) Pyruvate-C14, purity and stability. Anal Biochem 8:171–178

    Article  Google Scholar 

  • Waldmann E, Prey V, Jelinek F (1954) Zur Kenntnis der Brenztraubensäure, 872–881

    Article  CAS  Google Scholar 

  • Wang T-H, Lee W-C (2006) Expression and characterization of the N-acetyl-d-glucosamine 2-epimerase as a tagged protein for the conversion of N-acetyl-d-glucosamine to N-acetyl-d-mannosamine. J Chin Inst Chem Engr 37:131–137

    CAS  Google Scholar 

  • Wolff L (1899) Ueber die Parabrenztraubensäure. Justus Liebigs Ann Chem 305:154–165

    Article  CAS  Google Scholar 

  • Wong C-H, Lin C-H (2002) Ketoaldonic acids having formed stereogenic centers of R configuration: Methods and compositions, US 6353095

Download references

Acknowledgements

We would like to thank Dr. W. Ruth for performing as well as interpreting the LC-MS measurements. This work was supported by the scholarship programme of the German Federal Environmental Foundation (Deutsche Bundesstiftung Umwelt).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Kragl.

Appendix

Appendix

Table 2 Abbreviations and symbols

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, V., Hennemann, HG., Daußmann, T. et al. Modelling the reaction course of N-acetylneuraminic acid synthesis from N-acetyl-d-glucosamine—new strategies for the optimisation of neuraminic acid synthesis. Appl Microbiol Biotechnol 76, 597–605 (2007). https://doi.org/10.1007/s00253-007-1033-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1033-6

Keywords

Navigation