Skip to main content
Log in

SKPDT is a signaling peptide that stimulates sporulation and cry1Aa expression in Bacillus thuringiensis but not in Bacillus subtilis

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We have identified and characterized in the supernatant of the transition phase of Bacillus thuringiensis var. kurstaki the peptide SKPDT. This peptide was previously identified by in silico analysis by Pottathil and Lazazzera (Front Biosci 8:32–45 2003) as a putative signaling peptide (NprRB) of the Phr family in B. thuringiensis. The chemically synthesized NprRB did not affect the growth kinetics of B. thuringiensis var. kurstaki but stimulated the sporulation, spore release, and transcription of cry1Aa when added to cultures during the transition phase. In fact, when the peptide (100 nM) was added to a culture in transition phase, the transcription of cry1Aa was stimulated almost threefold, mainly from the late promoter BtII, which requires the late-stage sporulation-specific transcription factor σ K. On the other hand, NprRB did not have any effect on B. subtilis. Thus, SKPDT seems to be a signaling peptide specific for B. thuringiensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agaisse H, Gominet M, Okstad OA, Kolsto AB, Lereclus D (1999) PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol Microbiol 32:1043–1053

    Article  CAS  Google Scholar 

  • Anderson I, Sorokin A, Vinayak K, Reznik G, Bhattacharya A, Mikhailova N, Burd H, Joukov V, Kaznadzey D, Walunas T, D’Souza M, Larsen N, Pusch G, Liolios K, Grechkin Y, Lapidus A, Goltsman E, Chu L, Fonstein M, Ehrlich SD, Overbeek R, Kyrpides N, Ivanova N (2005) Comparative genome analysis of Bacillus cereus group genomes with Bacillus subtilis. FEMS Microbiol Lett 250:175–184

    Article  CAS  Google Scholar 

  • Baum J, Malvar T (1995) Regulation of insecticidal crystal protein production in Bacillus thuringiensis. Mol Microbiol 18:1–12

    Article  CAS  Google Scholar 

  • Bongiorni C, Ishikawa S, Stephenson S, Ogasawara N, Perego M (2005) Synergistic regulation of competence development in Bacillus subtilis by two Rap–Phr systems. J Bacteriol 187:4353–4361

    Article  CAS  Google Scholar 

  • Bravo A, Salamitou S, Agaisse H, Lereclus D (1996) Analysis of cry1Aa expressions in sigE and sigK mutants of Bacillus thuringiensis. Mol Gen Genet 250:734–741

    CAS  PubMed  Google Scholar 

  • Burbulys D, Trach KA, Hoch JA (1991) Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64:545–552

    Article  CAS  Google Scholar 

  • Burkholder WF, Kurtser I, Grossman AD (2001) Replication initiation proteins regulate a developmental checkpoint in Bacillus subtilis. Cell 104:269–279

    Article  CAS  Google Scholar 

  • Core L, Perego M (2003) TPR-mediated interaction of RapC with ComA inhibits response regulator-DNA binding for competence development in Bacillus subtilis. Mol Microbiol 49:1509–1522

    Article  CAS  Google Scholar 

  • Fujita M, Losick R (2003) The master regulator for entry into sporulation in Bacillus subtilis becomes a cell-specific transcription factor after asymmetric division. Genes Dev 17:1166–1174

    Article  CAS  Google Scholar 

  • Fujita M, Losick R (2005) Evidence that entry into sporulation in Bacillus subtilis is governed by a gradual increase in the level and activity of the master regulator Spo0A. Genes Dev 19:2236–2244

    Article  CAS  Google Scholar 

  • Grossman A, Losick R (1988) Extracellular control of spore formation in Bacillus subtilis. Proc Natl Acad Sci USA 85:4369–4373

    Article  CAS  Google Scholar 

  • Hoch JA (1998) Initiation of bacterial development. Curr Opin Microbiol 1:170–174

    Article  CAS  Google Scholar 

  • Jiang M, Shao W, Perego M, Hoch JA (2000a) Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol Microbiol 38:535–542

    Article  CAS  Google Scholar 

  • Jiang M, Grau R, Perego M (2000b) Differential processing of propeptide inhibitors of Rap phosphatases in Bacillus subtilis. J Bacteriol 182:303–310

    Article  CAS  Google Scholar 

  • Keim P, Mock M, Young J, Koehler TM (2006) The international Bacillus anthracis, B. cereus, and B. thuringiensis conference, “Bacillus-ACT05”. J Bacteriol 188:3433–3441

    Article  CAS  Google Scholar 

  • Kobayashi K, Shoji K, Shimizu T, Nakano K, Sato T, Kobayaski Y (1995) Analysis of a suppressor mutation ssb (kinC) of sur0B20 (spo0A) mutation in Bacillus subtilis reveals that kinC encodes a histidine protein kinase. J Bacteriol 177:176–182

    Article  CAS  Google Scholar 

  • LeDeaux JR, Grossman AD (1995) Isolation and characterization of kinC, a gene that encodes a sensor kinase homologous to the sporulation sensor kinases KinA and KinB in Bacillus subtilis. J Bacteriol 177:166–175

    Article  CAS  Google Scholar 

  • López-y-López EV, de la Torre M (2005) Redirection of metabolism during nutrient feeding in fed-batch cultures of Bacillus thuringiensis. Appl Microbiol Biotechnol 67:254–260

    Article  Google Scholar 

  • McQuade RS, Comella N, Grossman AD (2001) Control of a family of phosphatase regulatory genes (phr) by the alternate sigma factor sigma-H of Bacillus subtilis. J Bacteriol 183:4905–4909

    Article  CAS  Google Scholar 

  • Nugroho FA, Yamamoto H, Kobayashi Y, Sekiguchi J (1999) Characterization of a new sigma-K-dependent peptidoglycan hydrolase gene that plays a role in Bacillus subtilis mother cell lysis. J Bacteriol 181:6230–6237

    Article  CAS  Google Scholar 

  • Perego (1997) A peptide export–import control circuit modulating bacterial development regulates protein phosphatases of the phosphorelay. Proc Natl Acad Sci USA 94:8612–8617

    Article  CAS  Google Scholar 

  • Perego M, Hoch JA (1996) Cell–cell communication regulates the effects of protein aspartate phosphatases on the phosphorelay controlling development in Bacillus subtilis. Proc Natl Acad Sci USA 93:1549–1553

    Article  CAS  Google Scholar 

  • Perego M, Hoch JA (2002) Two-component systems, phosphorelays, and regulation of their activities by phosphatases. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and its closest relatives: from genes to cells, 2nd edn. ASM Press, Washington, DC, pp 473–481

    Google Scholar 

  • Perego M, Hanstein CG, Welsh KM, Djavakhishvili T, Glaser P, Hoch JA (1994) Multiple protein aspartate phosphatases provide a mechanism for the integration of diverse signals in the control of development in Bacillus subtilis. Cell 79:1047–1055

    Article  CAS  Google Scholar 

  • Pottathil M, Lazazzera B (2003) The extracellular Phr peptide–Rap phosphatase signaling circuit of Bacillus subtilis. Front Biosci 8:32–45

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 16.66–16.67

    Google Scholar 

  • Slamti L, Lereclus D (2002) A cell–cell signaling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group. EMBO J 21:4550–4559

    Article  CAS  Google Scholar 

  • Slamti L, Lereclus D (2005) Specificity and polymorphism of the PlcR–PapR quorum-sensing system in the Bacillus cereus group. J Bacteriol 187:1182–1187

    Article  CAS  Google Scholar 

  • Solomon MJ, Lazazzera BA, Grossman AD (1996) Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis. Genes Dev 10:2014–2024

    Article  CAS  Google Scholar 

  • Stahly CP, Dingman DW, Bulla LA Jr, Aronson A (1978) Possible origin and function of the parasporal crystals in Bacillus thuringiensis. Biochem Biophys Res Commun 58:581–588

    Article  Google Scholar 

  • Sterlini JM, Mandelstam J (1969) Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem J 113:29–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Veening JW, Hamoen LW, Kuipers OP (2005) Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis. Mol Microbiol 56:1481–1494

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant no. 6385 from CIAD A.C. to M. de la Torre. A. Aceves-Diez was supported by a CONACYT fellowship. The authors acknowledge the suggestions of M. Islas, E. Valenzuela, and A. Calderon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayra de la Torre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aceves-Diez, A.E., Robles-Burgueño, R. & de la Torre, M. SKPDT is a signaling peptide that stimulates sporulation and cry1Aa expression in Bacillus thuringiensis but not in Bacillus subtilis . Appl Microbiol Biotechnol 76, 203–209 (2007). https://doi.org/10.1007/s00253-007-0982-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0982-0

Keywords

Navigation