Skip to main content
Log in

Towards industrial pentose-fermenting yeast strains

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Production of bioethanol from forest and agricultural products requires a fermenting organism that converts all types of sugars in the raw material to ethanol in high yield and with a high rate. This review summarizes recent research aiming at developing industrial strains of Saccharomyces cerevisiae with the ability to ferment all lignocellulose-derived sugars. The properties required from the industrial yeast strains are discussed in relation to four benchmarks: (1) process water economy, (2) inhibitor tolerance, (3) ethanol yield, and (4) specific ethanol productivity. Of particular importance is the tolerance of the fermenting organism to fermentation inhibitors formed during fractionation/pretreatment and hydrolysis of the raw material, which necessitates the use of robust industrial strain background. While numerous metabolic engineering strategies have been developed in laboratory yeast strains, only a few approaches have been realized in industrial strains. The fermentation performance of the existing industrial pentose-fermenting S. cerevisiae strains in lignocellulose hydrolysate is reviewed. Ethanol yields of more than 0.4 g ethanol/g sugar have been achieved with several xylose-fermenting industrial strains such as TMB 3400, TMB 3006, and 424A(LNF-ST), carrying the heterologous xylose utilization pathway consisting of xylose reductase and xylitol dehydrogenase, which demonstrates the potential of pentose fermentation in improving lignocellulosic ethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albers E, Larsson C, Liden G, Niklasson C, Gustafsson L (1996) Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Appl Environ Microbiol 62(9):3187–3195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander NJ (1986) Acetone stimulation of ethanol production from D-xylose by Pachysolen tannophilus. Appl Microbiol Biotechnol 25:203–207

    CAS  Google Scholar 

  • Alkasrawi M, Galbe M, Zacchi G (2002) Recirculation of process streams in fuel ethanol production from softwood based on simultaneous saccharification and fermentation. Appl Biochem Biotechnol 98–100:849–861

    PubMed  Google Scholar 

  • Almeida JR, Modig T, Petersson A, Hahn-Hägerdal B, Liden G, Gorwa-Grauslund M-F (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol (in press)

  • Anderson RL, Wood WA (1962) Purification and properties of L-xylulokinase. J Biol Chem 237:1029

    CAS  PubMed  Google Scholar 

  • Ångspanneföreningen (1994) IPK system study—techno/economic reviews of process combinations of ethanol processes and other relevant industrial processes. Report: P23332-1. NUTEK, Stockholm, Sweden

  • Atkinson B, Mavituna F (1991) Biochemical engineering and biotechnology handbook. Stockton, New York, NY, USA

    Google Scholar 

  • Attfield PV, Bell PJ (2006) Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source. FEMS Yeast Res 6(6):862–868

    CAS  PubMed  Google Scholar 

  • Banerjee S, Archana A, Satyanarayana T (1994) Xylose metabolism in a thermophilic mould Malbranchea pulchella var. sulfurea TMD-8. Curr Microbiol 29:349–352

    CAS  Google Scholar 

  • Barnett JA (2000) Yeasts, characteristics and identification. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Becker J, Boles E (2003) A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl Environ Microbiol 69(7):4144–4150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berg C (2002) World ethanol production 2001. Available at http://www.distill.com/world_ethanol_production.htm

  • Bolen PL, Roth KA, Freer SN (1986) Affinity purifications of aldose reductase and xylitol dehydrogenase from the xylose-fermenting yeast Pachysolen tannophilus. Appl Environ Microbiol 52(4):660–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bothast RJ, Nichols NN, Dien BS (1999) Fermentations with new recombinant organisms. Biotechnol Prog 15(5):867–875

    CAS  PubMed  Google Scholar 

  • Boxma B, Voncken F, Jannink S, van Alen T, Akhmanova A, van Weelden SW, van Hellemond JJ, Ricard G, Huynen M, Tielens AG, Hackstein JH (2004) The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E. Mol Microbiol 51(5):1389–1399

    CAS  PubMed  Google Scholar 

  • Bro C, Regenberg B, Forster J, Nielsen J (2006) In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng 8(2):102–111

    CAS  PubMed  Google Scholar 

  • Bruinenberg PM, Peter HM, van Dijken JP, Scheffers WA (1983) The role of redox balances in the anaerobic fermentation of xylose by yeasts. Eur J Appl Microb Biotech 18:287–292

    CAS  Google Scholar 

  • Bruinenberg PM, de Bot PHM, van Dijken JP, Scheffers WA (1984) NADH-linked aldose reductase: the key to anaerobic fermentation of xylose by yeasts. Appl Microbiol Biotechnol 19:256–260

    CAS  Google Scholar 

  • Chen WP (1980) Glucose isomerase (a review). Process Biochem 15:30–41

    CAS  Google Scholar 

  • Chiang C, Knight SG (1960) A new pathway of pentose metabolism. Biochem Biophys Res Commun 3:554–559

    CAS  PubMed  Google Scholar 

  • Chiang LC, Gong CS, Chen LF, Tsao GT (1981) d-Xylulose fermentation to ethanol by Saccharomyces cerevisiae. Appl Environ Microbiol 42(2):284–289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cornish-Bowden A, Hofmeyr J-HS, Cardenas ML (1995) Strategies for manipulating metabolic fluxes in biotechnology. Bioorg Chem 23:439–449

    CAS  Google Scholar 

  • D’Amore T, Celotta G, Russell I, Stewart GG (1989) Selection and optimization of yeast suitable for ethanol production at 40°C. Enzyme Microb Technol 11:263–274

    Google Scholar 

  • de Vries RP, Flipphi MJ, Witteveen CF, Visser J (1994) Characterization of an Aspergillus nidulans L-arabitol dehydrogenase mutant. FEMS Microbiol Lett 123(1–2):83–90

    PubMed  Google Scholar 

  • Deanda K, Zhang M, Eddy C, Picataggio S (1996) Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl Environ Microbiol 62(12):4465–4470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng XX, Ho NW (1990) Xylulokinase activity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene. Appl Biochem Biotechnol 24–25:193–199

    PubMed  Google Scholar 

  • Dien BS, Kurtzman CP, Saha BC, Bothast RJ (1996) Screening for L-arabinose fermenting yeasts. Appl Biochem Biotechnol 57–58:233–242

    PubMed  Google Scholar 

  • Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63(3):258–266

    CAS  PubMed  Google Scholar 

  • Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66(8):3381–3386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eliasson A, Hofmeyr J-HS, Pedler S, Hahn-Hägerdal B (2001) The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb Technol 29:288–297

    CAS  Google Scholar 

  • Entian KD, Kötter P (1998) Yeast mutant and plasmid collections. In: Brown JPA, Tuite MF (eds) Yeast gene analysis, vol. 26. Academic, San Diego, California, pp 431–449

    Google Scholar 

  • Evans CT, Ratledge C (1984) Induction of xylulose-5-phosphate phosphoketolase in a variety of yeasts grown on D-xylose-the key to efficient xylose metabolism. Arch Microbiol 139:48–52

    CAS  Google Scholar 

  • Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311(5760):506–508

    CAS  PubMed  Google Scholar 

  • Fiaux J, Cakar ZP, Sonderegger M, Wuthrich K, Szyperski T, Sauer U (2003) Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryot Cell 2(1):170–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fong JC, Svenson CJ, Nakasugi K, Leong CT, Bowman JP, Chen B, Glenn DR, Neilan BA, Rogers PL (2006) Isolation and characterization of two novel ethanol-tolerant facultative–anaerobic thermophilic bacteria strains from waste compost. Extremophiles 10(5):363–372

    CAS  PubMed  Google Scholar 

  • Fonseca C, Spencer-Martins I, Hahn-Hägerdal B (2007) L-arabinose metabolism in Candida arabinofermentans PYCC 5603T and Pichia guilliermondii PYCC 3012: influence of sugar and oxygen on product formation. Appl Microbiol Biotechnol DOI https://doi.org/10.1007/s00253-066-0830-7

  • Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59(6):618–628

    CAS  PubMed  Google Scholar 

  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62(2):334–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gancedo JM, Lagunas R (1973) Contribution of the pentose phosphate pathway to glucose metabolism in Saccharomyces cerevisiae: a critical analysis on the use of labelled glucose. Plant Sci Lett 1:193–200

    CAS  Google Scholar 

  • Garay-Arroyo A, Covarrubias AA, Clark I, Nino I, Gosset G, Martinez A (2004) Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 63(6):734–741

    CAS  PubMed  Google Scholar 

  • Gárdonyi M, Jeppsson M, Liden G, Gorwa-Grauslund MF, Hahn-Hägerdal B (2003a) Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 82(7):818–824

    PubMed  Google Scholar 

  • Gárdonyi M, Osterberg M, Rodrigues C, Spencer-Martins I, Hahn-Hägerdal B (2003b) High capacity xylose transport in Candida intermedia PYCC 4715. FEMS Yeast Res 3(1):45–52

    PubMed  Google Scholar 

  • Gonzalez SS, Barrio E, Gafner J, Querol A (2006) Natural hybrids from Saccharomyces cerevisiae, Saccharomyces bayanus and Saccharomyces kudriavzevii in wine fermentations. FEMS Yeast Res 6(8):1221–1234

    CAS  PubMed  Google Scholar 

  • Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD (2006) Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 71(3):339–349

    CAS  PubMed  Google Scholar 

  • Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10(2):141–146

    CAS  PubMed  Google Scholar 

  • Groth C, Hansen J, Piskur J (1999) A natural chimeric yeast containing genetic material from three species. Int J Syst Bacteriol 49(Pt 4):1933–1938

    CAS  PubMed  Google Scholar 

  • Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24(13):2519–2524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn-Hägerdal B, Pamment N (2004) Microbial pentose metabolism. Appl Biochem Biotechnol 113–116:1207–1209

    PubMed  Google Scholar 

  • Hahn-Hägerdal B, Linden T, Senac T, Skoog K (1991) Ethanolic fermentation of pentoses in lignocellulose hydrolysates. Appl Biochem Biotechnol 28–29:131–144

    PubMed  Google Scholar 

  • Hahn-Hägerdal B, Jeppsson H, Olsson L, Mohagheghi A (1994a) An interlaboratory comparison of the performance of ethanol-producing micro-organisms in a xylose-rich acid hydrolysate. Appl Microbiol Biotechnol 41:62–72

    Google Scholar 

  • Hahn-Hägerdal B, Jeppsson H, Skoog K, Prior BA (1994b) Biochemistry and physiology of xylose fermentation by yeasts. Enzyme Microb Technol 16:933–943

    Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Larsson CU, Gorwa-Grauslund M, Görgens J, van Zyl WH (2005) Role of cultivation media in the development of yeast strains for large scale industrial use. Microb Cell Fact 4:31

    PubMed  PubMed Central  Google Scholar 

  • Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund M-F, Liden G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24(12):549–556

    PubMed  Google Scholar 

  • Hamacher T, Becker J, Gárdonyi M, Hahn-Hägerdal B, Boles E (2002) Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148(Pt 9):2783–2788

    CAS  PubMed  Google Scholar 

  • Harhangi HR, Akhmanova AS, Emmens R, van der Drift C, de Laat WT, van Dijken JP, Jetten MS, Pronk JT, Op den Camp HJ (2003) Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway. Arch Microbiol 180(2):134–141

    CAS  PubMed  Google Scholar 

  • Hashimoto S, Ogura M, Aritomi K, Hoshida H, Nishizawa Y, Akada R (2005) Isolation of auxotrophic mutants of diploid industrial yeast strains after UV mutagenesis. Appl Environ Microbiol 71(1):312–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayn M, Steiner W, Klinger R, Steinmüller H, Sinner M, Esterbauer H (1993) Basic research and pilot studies on the enzymatic conversion of lignocellulosics. In: Saddler JN (ed) Bioconversion of forest and agricultural plant residues. CAB International, Wallingford, UK, pp 33–72

    Google Scholar 

  • Herrera S (2006) Bonkers about biofuels. Nat Biotechnol 24(7):755–760

    CAS  PubMed  Google Scholar 

  • Hespell RB, Wyckoff H, Dien BS, Bothast RJ (1996) Stabilization of pet operon plasmids and ethanol production in Escherichia coli strains lacking lactate dehydrogenase and pyruvate formate-lyase activities. Appl Environ Microbiol 62(12):4594–4597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ho NW, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64(5):1852–1859

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ho NW, Chen Z, Brainard AP, Sedlak M (1999) Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv Biochem Eng Biotechnol 65:163–192

    CAS  PubMed  Google Scholar 

  • Hofmeyr JS, Cornish-Bowden A (2000) Regulating the cellular economy of supply and demand. FEBS Lett 476(1–2):47–51

    CAS  PubMed  Google Scholar 

  • Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53(10):2420–2425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffries TW (1983) Utilization of xylose by bacteria, yeasts, and fungi. Adv Biochem Eng Biotechnol 27:1–32

    CAS  PubMed  Google Scholar 

  • Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17(3):320–326

    CAS  PubMed  Google Scholar 

  • Jeppsson M, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2002) Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 68(4):1604–1609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeppsson M, Johansson B, Jensen PR, Hahn-Hägerdal B, Gorwa-Grauslund MF (2003a) The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains. Yeast 20(15):1263–1272

    CAS  PubMed  Google Scholar 

  • Jeppsson M, Träff K, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2003b) Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Res 3(2):167–175

    CAS  PubMed  Google Scholar 

  • Jeppsson M, Bengtsson O, Franke K, Lee H, Hahn-Hägerdal B, Gorwa-Grauslund MF (2006) The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 93(4):665–673

    CAS  PubMed  Google Scholar 

  • Jin YS, Jeffries TW (2003) Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Appl Biochem Biotechnol 105–108:277–286

    PubMed  Google Scholar 

  • Jin YS, Ni H, Laplaza JM, Jeffries TW (2003) Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl Environ Microbiol 69(1):495–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin YS, Alper H, Yang YT, Stephanopoulos G (2005) Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl Environ Microbiol 71(12):8249–8256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson B (2001) Metabolic engineering of the pentose phosphate pathway of xylose fermenting Saccharomyces cerevisiae. Ph.D. thesis, Department of Applied Microbiology, Lund University

  • Johansson B, Hahn-Hägerdal B (2002a) The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Res 2:277–282

    CAS  PubMed  Google Scholar 

  • Johansson B, Hahn-Hägerdal B (2002b) Overproduction of pentose phosphate pathway enzymes using a new CRE-loxP expression vector for repeated genomic integration in Saccharomyces cerevisiae. Yeast 19(3):225–231

    CAS  PubMed  Google Scholar 

  • Johansson B, Christensson C, Hobley T, Hahn-Hägerdal B (2001) Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl Environ Microbiol 67(9):4249–4255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kadam KL, Wooley RJ, Aden A, Nguyen QA, Yancey MA, Ferraro FM (2000) Softwood forest thinnings as a biomass source for ethanol production: a feasibility study for California. Biotechnol Prog 16(6):947–957

    CAS  PubMed  Google Scholar 

  • Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64(2):137–145

    CAS  PubMed  Google Scholar 

  • Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF (2005) Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22(5):359–368

    CAS  PubMed  Google Scholar 

  • Karhumaa K, Wiedemann B, Boles E, Hahn-Hägerdal B, Gorwa-Grauslund MF (2006) Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microb Cell Fact 5(1):18

    PubMed  PubMed Central  Google Scholar 

  • Karhumaa K, Fromanger R, Hahn-Hägerdal B, Gorwa-Grauslund MF (2007) High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 73(5):1039–1046

    CAS  PubMed  Google Scholar 

  • Katahira S, Mizuike A, Fukuda H, Kondo A (2006) Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 72:1136–1143

    CAS  PubMed  Google Scholar 

  • Klabunde J, Kunze G, Gellissen G, Hollenberg CP (2003) Integration of heterologous genes in several yeast species using vectors containing a Hansenula polymorpha-derived rDNA-targeting element. FEMS Yeast Res 4(2):185–193

    CAS  PubMed  Google Scholar 

  • Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10–26

    CAS  PubMed  Google Scholar 

  • Kötter P, Ciriacy M (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776–783

    Google Scholar 

  • Kuhn A, van Zyl C, van Tonder A, Prior BA (1995) Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae. Appl Environ Microbiol 61(4):1580–1585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS, de Laat WT, den Ridder JJ, Op den Camp HJ, van Dijken JP, Pronk JT (2003) High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 4(1):69–78

    CAS  PubMed  Google Scholar 

  • Kuyper M, Winkler AA, Van Dijken JP, Pronk JT (2004) Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4(6):655–664

    CAS  PubMed  Google Scholar 

  • Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP, Pronk JT (2005a) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5(4–5):399–409

    CAS  PubMed  Google Scholar 

  • Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT (2005b) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5(10):925–934

    CAS  PubMed  Google Scholar 

  • Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant N-O (1999a) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol 24:151–159

    CAS  Google Scholar 

  • Larsson S, Reimann A, Nilvebrant N-O, Jönsson LJ (1999b) Comparison of different methods for the detoxification of lignocellulosic hydrolysates of spruce. Appl Biochem Biotechnol 77–79:91–103

    Google Scholar 

  • Larsson S, Cassland P, Jönsson LJ (2001a) Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol 67(3):1163–1170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson S, Nilvebrant NO, Jönsson LJ (2001b) Effect of overexpression of Saccharomyces cerevisiae Pad1p on the resistance to phenylacrylic acids and lignocellulose hydrolysates under aerobic and oxygen-limited conditions. Appl Microbiol Biotechnol 57(1–2):167–174

    CAS  PubMed  Google Scholar 

  • Leandro MJ, Gonçalves P, Spencer-Martins I (2006) Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter. Biochem J 395(3):543–549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee N, Bendet I (1967) Crystalline L-ribulokinase from Escherichia coli. J Biol Chem 242(9):2043–2050

    CAS  PubMed  Google Scholar 

  • Lee N, Patrick JW, Masson M (1968) Crystalline L-ribulose 5-phosphate 4-epimerase from Escherichia coli. J Biol Chem 243(18):4700–4705

    CAS  PubMed  Google Scholar 

  • Lee KJ, Tribe DE, Rogers PL (1979) Ethanol production by Zymomonas mobilis in continuous culture at high glucose concentration. Biotechnol Lett 1:421–426

    CAS  Google Scholar 

  • Lee WJ, Kim MD, Ryu YW, Bisson LF, Seo JH (2002) Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 60(1–2):186–191

    CAS  PubMed  Google Scholar 

  • Linden T, Peetre J, Hahn-Hägerdal B (1992) Isolation and characterization of acetic acid-tolerant galactose-fermenting strains of Saccharomyces cerevisiae from a spent sulfite liquor fermentation plant. Appl Environ Microbiol 58:1661–1669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu ZL (2006) Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors. Appl Microbiol Biotechnol 73(1):27–36

    CAS  PubMed  Google Scholar 

  • Ljunggren M (2005) Kinetic analysis and modeling of enzymatic hydrolysis and SSF. MSc thesis, Department of Chemical Engineering, Lund University

  • Lopes TS, de Wijs IJ, Steenhauer SI, Verbakel J, Planta RJ (1996) Factors affecting the mitotic stability of high-copy-number integration into the ribosomal DNA of Saccharomyces cerevisiae. Yeast 12(5):467–477

    CAS  PubMed  Google Scholar 

  • Lönn A, Gardonyi M, van Zyl W, Hahn-Hägerdal B, Otero RC (2002) Cold adaptation of xylose isomerase from Thermus thermophilus through random PCR mutagenesis. Gene cloning and protein characterization. Eur J Biochem 269(1):157–163

    PubMed  Google Scholar 

  • Lönn A, Träff-Bjerre KL, Cordero Otero RR, van Zyl WH, Hahn-Hägerdal B (2003) Xylose isomerase activity influences xylose fermentation with recombinant Saccharomyces cerevisiae strains expressing mutated xylA from Thermus thermophilus. Enzyme Microb Technol 32:567–573

    Google Scholar 

  • Marinoni G, Manuel M, Petersen RF, Hvidtfeldt J, Sulo P, Piskur J (1999) Horizontal transfer of genetic material among Saccharomyces yeasts. J Bacteriol 181(20):6488–6496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin C, Galbe M, Wahlbom CF, Hahn-Hägerdal B, Jönsson LJ (2002) Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb Technol 31:274–282

    CAS  Google Scholar 

  • McMillan JD, Boynton BL (1994) Arabinose utilization by xylose-fermenting yeasts and fungi. Appl Biochem Biotechnol 45–46:569–584

    PubMed  Google Scholar 

  • Meinander N, Hahn-Hägerdal B (1997) Fed-batch xylitol production with two recombinant Saccharomyces cerevisiae strain expressing XYL1 at different levels, using glucose as a cosubstrate: a comparison of production parameters and strain stability. Biotechnol Bioeng 54(4):391–399

    CAS  PubMed  Google Scholar 

  • Meinander N, Boels I, Hahn-Hägerdal B (1999) Fermentation of xylose/glucose mixtures by metabolically engineerred Saccharomyces cerevisiae strains expressing XYL1 and XYL2 from Pichia stipitis with and without overexpression of TAL1. Bioresour Technol 68:79–87

    CAS  Google Scholar 

  • Mohagheghi A, Evans K, Chou YC, Zhang M (2002) Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Appl Biochem Biotechnol 98–100:885–898

    PubMed  Google Scholar 

  • Moniruzzaman M, Dien BS, Skory CD, Chen ZD, Hespell RB, Ho NW, Dale BE, Bothast RJ (1998) Fermentation of corn fibre sugars by an engineered xylose utilizing Saccharomyces yeast strain. World J Microbiol Biotechnol 13:341–346

    Google Scholar 

  • Moreira dos Santos M, Thygesen G, Kotter P, Olsson L, Nielsen J (2003) Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability. FEMS Yeast Res 4(1):59–68

    CAS  PubMed  Google Scholar 

  • Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96(18):1986–1993

    CAS  PubMed  Google Scholar 

  • Nigam JN (2001) Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol 87(1):17–27

    CAS  PubMed  Google Scholar 

  • Nilsson A, Gorwa-Grauslund MF, Hahn-Hägerdal B, Liden G (2005) Cofactor dependence in furan reduction by Saccharomyces cerevisiae in fermentation of acid-hydrolyzed lignocellulose. Appl Environ Microbiol 71(12):7866–7871

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohara H (2003) Biorefinery. Appl Microbiol Biotechnol 62(5–6):474–477

    CAS  PubMed  Google Scholar 

  • Öhgren K, Bengtsson O, Gorwa-Grauslund MF, Galbe M, Hahn-Hägerdal B, Zacchi G (2006) Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J Biotechnol 126(4):488–498

    PubMed  Google Scholar 

  • Olsson L, Linden T, Hahn-Hägerdal B (1992) Performance of microorganisms in spent sulphite liquor and enzymatic hydrolysate of steam-pretreated Salix. Appl Biochem Biotechnol 34–35:359–368

    Google Scholar 

  • Olsson L, Soerensen HR, Dam BP, Christensen H, Krogh KM, Meyer AS (2006) Separate and simultaneous enzymatic hydrolysis and fermentation of wheat hemicellulose with recombinant xylose utilizing Saccharomyces cerevisiae. Appl Biochem Biotechnol 129–132:117–129

    PubMed  Google Scholar 

  • Oura E (1977) Reaction products of yeast fermentations. Process Biochem 12:19–21, 35

    CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000a) Fermentation of lignocellulosic hydrolysates I: Inhibition and detoxification. Bioresour Technol 74:17–24

    CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000b) Fermentation of lignocellulosic hydrolysates II: Inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    CAS  Google Scholar 

  • Panagiotou G, Christakopoulos P, Grotkjaer T, Olsson L (2006) Engineering of the redox imbalance of Fusarium oxysporum enables anaerobic growth on xylose. Metab Eng 8(5):474–482

    CAS  PubMed  Google Scholar 

  • Patrick JW, Lee N (1968) Purification and properties of an L-arabinose isomerase from Escherichia coli. J Biol Chem 243(16):4312–4318

    CAS  PubMed  Google Scholar 

  • Petersson A, Almeida JR, Modig T, Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF, Liden G (2006) A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 23(6):455–464

    CAS  PubMed  Google Scholar 

  • Pitkänen JP, Rintala E, Aristidou A, Ruohonen L, Penttilä M (2005) Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Appl Microbiol Biotechnol 67(6):827–837

    PubMed  Google Scholar 

  • Richard P, Toivari MH, Penttilä M (1999) Evidence that the gene YLR070c of Saccharomyces cerevisiae encodes a xylitol dehydrogenase. FEBS Lett 457(1):135–138

    CAS  PubMed  Google Scholar 

  • Richard P, Putkonen M, Väänänen R, Londesborough J, Penttilä M (2002) The missing link in the fungal L-arabinose catabolic pathway, identification of the L-xylulose reductase gene. Biochemistry 41(20):6432–6437

    CAS  PubMed  Google Scholar 

  • Richard P, Verho R, Putkonen M, Londesborough J, Penttilä M (2003) Production of ethanol from L-arabinose by Saccharomyces cerevisiae containing a fungal L-arabinose pathway. FEMS Yeast Res 3(2):185–189

    CAS  PubMed  Google Scholar 

  • Rizzi M, Elrlemann P, Bui-Thahn N-A, Dellweg H (1988) Xylose fermentation by yeasts. 4. Purification and kinetic studies of xylose reductase from Pichia stipitis. Appl Microbiol Biotechnol 29:148–154

    CAS  Google Scholar 

  • Rizzi M, Harwart K, Erlemann P, Bui-Thahn N-A, Dellweg H (1989) Purification and properties of the NAD+ xylitol-dehydrogenase from the yeast Pichia stipitis. J Ferment Bioeng 67:20–24

    CAS  Google Scholar 

  • Roca C, Nielsen J, Olsson L (2003) Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production. Appl Environ Microbiol 69(8):4732–4736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roca C, Haack MB, Olsson L (2004) Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae. Appl Microbiol Biotechnol 63(5):578–583

    CAS  PubMed  Google Scholar 

  • Rodrigues de Sousa H, Spencer-Martins I, Gonçalves P (2004) Differential regulation by glucose and fructose of a gene encoding a specific fructose/H+ symporter in Saccharomyces sensu stricto yeasts. Yeast 21(6):519–530

    PubMed  Google Scholar 

  • Rogers PL, Lee KJ, Tribe DE (1979) Kinetics of ethanol production by Zymomonas mobilis at high sugar concentration. Biotechnol Lett 1:165–170

    CAS  Google Scholar 

  • Rosenberg SL (1980) Fermentation of pentose sugars to ethanol and other neutral products by microorganisms. Enzyme Microb Technol 2:185–193

    CAS  Google Scholar 

  • Sauer U (2001) Evolutionary engineering of industrially important microbial phenotypes. Adv Biochem Eng Biotechnol 73:129–169

    CAS  PubMed  Google Scholar 

  • Schell DJ, Riley CJ, Dowe N, Farmer J, Ibsen KN, Ruth MF, Toon ST, Lumpkin RE (2004) A bioethanol process development unit: initial operating experiences and results with a corn fiber feedstock. Bioresour Technol 91(2):179–188

    CAS  PubMed  Google Scholar 

  • Schneider H, Wang PY, Chan YK, Maleszka R (1981) Conversion of D-xylose into ethanol by the yeast Pachysolen tannophilus. Biotechnol Lett 3:89–92

    CAS  Google Scholar 

  • Sedlak M, Ho NW (2001) Expression of E. coli araBAD operon encoding enzymes for metabolizing L-arabinose in Saccharomyces cerevisiae. Enzyme Microb Technol 28(1):16–24

    CAS  PubMed  Google Scholar 

  • Sedlak M, Ho NW (2004) Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose. Appl Biochem Biotechnol 113–116:403–416

    PubMed  Google Scholar 

  • Senac T, Hahn-Hägerdal B (1990) Intermediary metabolite concentrations in xylulose- and glucose-fermenting Saccharomyces cerevisiae cells. Appl Environ Microbiol 56(1):120–126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skoog K, Hahn-Hägerdal B (1988) Xylose fermentation. Enzyme Microb Technol 10:66–80

    CAS  Google Scholar 

  • Skoog K, Hahn-Hägerdal B (1990) Effect of oxygenation on xylose fermentation by Pichia stipitis. Appl Environ Microbiol 56(11):3389–3394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slininger PJ, Dien BS, Gorsich SW, Liu ZL (2006) Nitrogen source and mineral optimization enhance D-xylose conversion to ethanol by the yeast Pichia stipitis NRRL Y-7124. Appl Microbiol Biotechnol

  • Sommer P, Georgieva T, Ahring BK (2004) Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose. Biochem Soc Trans 32(Pt 2):283–289

    CAS  PubMed  Google Scholar 

  • Sonderegger M, Sauer U (2003) Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69(4):1990–1998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sonderegger M, Jeppsson M, Hahn-Hägerdal B, Sauer U (2004a) Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl Environ Microbiol 70(4):2307–2317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sonderegger M, Jeppsson M, Larsson C, Gorwa-Grauslund MF, Boles E, Olsson L, Spencer-Martins I, Hahn-Hägerdal B, Sauer U (2004b) Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng 87(1):90–98

    CAS  PubMed  Google Scholar 

  • Sonderegger M, Schumperli M, Sauer U (2004c) Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae. Appl Environ Microbiol 70(5):2892–2897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer-Martins I (1994) Transport of sugars in yeasts: implications in the fermentation of lignocellulosic materials. Bioresour Technol 50:51–57

    CAS  Google Scholar 

  • Swings J, DeLey J (1977) The biology of Zymomonas. Bacteriol Rev 41:1–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szostak JW, Wu R (1979) Insertion of a genetic marker into the ribosomal DNA of yeast. Plasmid 2(4):536–554

    CAS  PubMed  Google Scholar 

  • Taherzadeh MJ, Gustafsson L, Niklasson C, Liden G (2000) Inhibition effects of furfural on aerobic batch cultivation of Saccharomyces cerevisiae growing on ethanol and/or acetic acid. J Biosci Bioeng 90(4):374–380

    CAS  PubMed  Google Scholar 

  • Tantirungkij M, Nakashima N, Seki T, Yoshida T (1993) Construction of xylose-assimilating Saccharomyces cerevisiae. J Ferment Bioeng 75:83–88

    CAS  Google Scholar 

  • Thomas KC, Ingledew WM (1990) Fuel alcohol production: effects of free amino nitrogen on fermentation of very-high-gravity wheat mashes. Appl Environ Microbiol 56(7):2046–2050

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toivari MH, Aristidou A, Ruohonen L, Penttilä M (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng 3(3):236–249

    CAS  PubMed  Google Scholar 

  • Toivari MH, Salusjärvi L, Ruohonen L, Penttilä M (2004) Endogenous xylose pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 70(6):3681–3686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toivola A, Yarrow D, van den Bosch E, van Dijken JP, Scheffers WA (1984) Alcoholic fermentation of d-xylose by yeasts. Appl Environ Microbiol 47(6):1221–1223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tong GE (1979) Industrial chemicals from fermentation. Enzyme Microb Technol 1:173–179

    CAS  Google Scholar 

  • Träff KL, Otero Cordero RR, van Zyl WH, Hahn-Hägerdal B (2001) Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol 67(12):5668–5674

    PubMed  PubMed Central  Google Scholar 

  • Träff KL, Jönsson LJ, Hahn-Hägerdal B (2002) Putative xylose and arabinose reductases in Saccharomyces cerevisiae. Yeast 19(14):1233–1241

    PubMed  Google Scholar 

  • Träff-Bjerre KL, Jeppsson M, Hahn-Hägerdal B, Gorwa-Grauslund MF (2004) Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae. Yeast 21(2):141–150

    PubMed  Google Scholar 

  • Tyurin MV, Sullivan CR, Lynd LR (2005) Role of spontaneous current oscillations during high-efficiency electrotransformation of thermophilic anaerobes. Appl Environ Microbiol 71(12):8069–8076

    CAS  PubMed  PubMed Central  Google Scholar 

  • van der Westhuizen TJ, Pretorius IS (1992) The value of electrophoretic fingerprinting and karyotyping in wine yeast breeding programmes. Antonie Van Leeuwenhoek 61(4):249–257

    PubMed  Google Scholar 

  • vanKuyk PA, de Groot MJ, Ruijter GJ, de Vries RP, Visser J (2001) The Aspergillus niger D-xylulose kinase gene is co-expressed with genes encoding arabinan degrading enzymes, and is essential for growth on D-xylose and L-arabinose. Eur J Biochem 268(20):5414–5423

    CAS  PubMed  Google Scholar 

  • Verho R, Londesborough J, Penttilä M, Richard P (2003) Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol 69(10):5892–5897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verho R, Putkonen M, Londesborough J, Penttilä M, Richard P (2004) A novel NADH-linked l-xylulose reductase in the l-arabinose catabolic pathway of yeast. J Biol Chem 279(15):14746–14751

    CAS  PubMed  Google Scholar 

  • Visser W, Scheffers WA, Batenburg-van der Vegte WH, van Dijken JP (1990) Oxygen requirements of yeasts. Appl Environ Microbiol 56(12):3785–3792

    CAS  PubMed  PubMed Central  Google Scholar 

  • von Sivers M, Zacchi G (1996) Ethanol from lignocellulosics: a review of the economy. Bioresour Technol 56:131–140

    Google Scholar 

  • von Sivers M, Zacchi G, Olsson L, Hahn-Hägerdal B (1995) Cost analysis of ethanol production from willow using recombinant Escherichia coli. Biotechnol Prog 10:556–560

    Google Scholar 

  • Vongsuvanlert V, Tani Y (1988) Purification and characterisation of xylose isomerase of a methanol yeast, C. boidinii, which is involved in sorbitol production from glucose. Agric Biol Chem 52:1817–1824

    CAS  Google Scholar 

  • Wahlbom CF (2002) Metabolic engineering and random mutagenesis for improved xylose utilisation of Saccharomyces cerevisiae. Ph.D. thesis, Department of Applied Microbiology, Lund University

  • Wahlbom CF, Hahn-Hägerdal B (2002) Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 78(2):172–178

    CAS  PubMed  Google Scholar 

  • Wahlbom CF, van Zyl WH, Jönsson LJ, Hahn-Hägerdal B, Otero RR (2003) Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res 3(3):319–326

    CAS  PubMed  Google Scholar 

  • Walfridsson M, Hallborn J, Penttilä M, Keränen S, Hahn-Hägerdal B (1995) Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl Environ Microbiol 61(12):4184–4190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walfridsson M, Bao X, Anderlund M, Lilius G, Bulow L, Hahn-Hägerdal B (1996) Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 62(12):4648–4651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walfridsson M, Anderlund M, Bao X, Hahn-Hägerdal B (1997) Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl Microbiol Biotechnol 48(2):218–224

    CAS  PubMed  Google Scholar 

  • Walker GM (1998) Yeast physiology and biotechnology. Wiley, New York

    Google Scholar 

  • Wang VW, Jeffries T (1990) Purification and properties of xylitol dehydrogenase from the xylose-fermenting Candida shehatae. Appl Biochem Biotechnol 26:197–206

    Google Scholar 

  • Wang PY, Schneider H (1980) Growth of yeasts on D-xylulose 1. Can J Microbiol 26(9):1165–1168

    CAS  PubMed  Google Scholar 

  • Watanabe S, Shimada N, Tajima K, Kodaki T, Makino K (2006) Identification and characterization of L-arabonate dehydratase, L-2-keto-3-deoxyarabonate dehydratase and L-arabinolactonase involved in an alternative pathway of L-arabinose metabolism: novel evolutionary insight into sugar metabolism. J Biol Chem 281:33521–33536

    CAS  PubMed  Google Scholar 

  • Wery J, Gutker D, Renniers AC, Verdoes JC, van Ooyen AJ (1997) High copy number integration into the ribosomal DNA of the yeast Phaffia rhodozyma. Gene 184(1):89–97

    CAS  PubMed  Google Scholar 

  • Weusthuis RA, Adams H, Scheffers WA, van Dijken JP (1993) Energetics and kinetics of maltose transport in Saccharomyces cerevisiae: a continuous culture study. Appl Environ Microbiol 59(9):3102–3109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiegel J, Ljungdahl LG (1986) The importance of thermophilic bacteria in biotechnology. Crit Rev Biotechnol 3:39–108

    CAS  Google Scholar 

  • Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19(4):1109–1117

    CAS  PubMed  Google Scholar 

  • Wooley RJ (1999) Lignocellulosic biomass to ethanol processing design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis current and futuristic scenarios. US Department of Energy, USA, NREL/TP-580-26157

  • Wu JF, Lastick SM, Updegraff DM (1986) Ethanol production from sugars derived from plant biomass by a novel fungus. Nature 321:887–888

    CAS  Google Scholar 

  • Yamanaka K (1969) Inhibition of D-xylose isomerase by pentitols and D-lyxose. Arch Biochem Biophys 131(2):502–506

    CAS  PubMed  Google Scholar 

  • Zaldivar J, Borges A, Johansson B, Smits HP, Villas-Boas SG, Nielsen J, Olsson L (2002) Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Appl Microbiol Biotechnol 59(4–5):436–442

    CAS  PubMed  Google Scholar 

  • Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support from the Swedish Energy Agency (STEM), Sweden, and the Fundação para a Ciência e a Technologia (FCT), Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bärbel Hahn-Hägerdal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn-Hägerdal, B., Karhumaa, K., Fonseca, C. et al. Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74, 937–953 (2007). https://doi.org/10.1007/s00253-006-0827-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0827-2

Keywords

Navigation