Skip to main content
Log in

Characterization of the T7 promoter system for expressing penicillin acylase in Escherichia coli

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The pac gene encoding penicillin acylase (PAC) was overexpressed under the regulation of the T7 promoter in Escherichia coli. PAC, with its complex formation mechanism, serves as a unique target protein for demonstration of several key strategies for enhancing recombinant protein production. The current T7 system for pac overexpression was fraught with various technical hurdles. Upon the induction with a conventional inducer of isopropyl-β-d-thiogalactopyranoside (IPTG), the production of PAC was limited by the accumulation of PAC precursors (proPAC) as inclusion bodies and various negative cellular responses such as growth inhibition and cell lysis. The expression performance could be improved by the coexpression of degP encoding a periplasmic protein with protease and chaperone activities. In addition to IPTG, arabinose was shown to be another effective inducer. Interestingly, arabinose not only induced the current T7 promoter system for pac expression but also facilitated the posttranslational processing of proPAC for maturation, resulting in significant enhancement for the production of PAC. Glycerol appeared to have an effect similar to, but not as significant as, arabinose for enhancing the production of PAC. The study highlights the importance of developing suitable genetically engineered strains with culture conditions for enhancing recombinant protein production in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amann E, Ochs B, Abel KJ (1988) Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69:301–315

    CAS  PubMed  Google Scholar 

  • Andersen DC, Krummen L (2002) Recombinant protein expression for therapeutic applications. Curr Opin Biotechnol 13:117–123

    CAS  PubMed  Google Scholar 

  • Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421

    CAS  PubMed  Google Scholar 

  • Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22:1399–1408

    Article  CAS  PubMed  Google Scholar 

  • Chang ACY, Cohen SN (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the p15A cryptic miniplasmid. J Bacteriol 134:1141–1156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chou C-H, Aristidou AA, Meng S-Y, Bennett GN, San K-Y (1995) Characterization of a pH-inducible promoter system for high-level expression of recombinant proteins in Escherichia coli. Biotechnol Bioeng 47:186–192

    CAS  PubMed  Google Scholar 

  • Chou C-H, Bennett GN, San K-Y (1996) Genetic manipulation of stationary-phase genes to enhance recombinant protein production in Escherichia coli. Biotechnol Bioeng 50:636–642

    CAS  PubMed  Google Scholar 

  • Chou CP, Yu C-C, Tseng J-H, Lin M-I, Lin H-K (1999) Genetic manipulation to identify limiting steps and develop strategies for high-level expression of penicillin acylase in Escherichia coli. Biotechnol Bioeng 63:263–272

    CAS  PubMed  Google Scholar 

  • Chung CT, Miller RH (1993) Preparation and storage of competent Escherichia coli cells. Methods Enzymol 218:621–627

    CAS  PubMed  Google Scholar 

  • DeBoer HA, Comstock LS, Vasser M (1983) The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc Natl Acad Sci U S A 80:21–25

    CAS  Google Scholar 

  • Dong H, Nilsson L, Kurland CG (1995) Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction. J Bacteriol 177:1497–1504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elander RP (2003) Industrial production of beta-lactam antibiotics. Appl Microbiol Biotechnol 61:385–392

    CAS  PubMed  Google Scholar 

  • Figler RA, Omote H, Nakamoto RK, Al-Shawi MK (2000) Use of chemical chaperones in the yeast Saccharomyces cerevisiae to enhance heterologous membrane protein expression: High-yield expression and purification of human P-glycoprotein. Arch Biochem Biophys 376:34–46

    CAS  PubMed  Google Scholar 

  • Futami J, Tsushima Y, Tada H, Seno M, Yamada H (2000) Convenient and efficient in vitro folding of disulfide-containing globular protein from crude bacterial inclusion bodies. J Biochem (Tokyo) 127:435–441

    CAS  Google Scholar 

  • Gill RT, Valdes JJ, Bentley WE (2000) A comparative study of global stress gene regulation in response to overexpression of recombinant proteins in Escherichia coli. Metab Eng 2:178–189

    CAS  PubMed  Google Scholar 

  • Guzman L-M, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hewitt L, Kasche V, Lummer K, Lewis RJ, Murshudov GN, Verma CS, Dodson GG, Wilson KS (2000) Structure of a slow processing precursor penicillin acylase from Escherichia coli reveals the linker peptide blocking the active-site cleft. J Mol Biol 302:887–898

    CAS  PubMed  Google Scholar 

  • Kasche V, Lummer K, Nurk A, Piotraschke E, Rieks A, Stoeva S, Voelter W (1999) Intramolecular autoproteolysis initiates the maturation of penicillin amidase from Escherichia coli. Biochim Biophys Acta 1433:76–86

    CAS  PubMed  Google Scholar 

  • Khosla C, Curtis JE, Bydalek P, Swartz JR, Bailey JE (1990) Expression of recombinant proteins in Escherichia coli using an oxygen-responsive promoter. Biotechnology (NY) 8:554–558

    CAS  Google Scholar 

  • Kurland CG, Dong HJ (1996) Bacterial growth inhibition by overproduction of protein. Mol Microbiol 21:1–4

    CAS  PubMed  Google Scholar 

  • Lim HK, Jung KH, Park DH, Chung SI (2000) Production characteristics of interferon-alpha using an l-arabinose promoter system in a high-cell-density culture. Appl Microbiol Biotechnol 53:201–208

    CAS  PubMed  Google Scholar 

  • Lim HK, Kim SG, Jung KH, Seo JH (2004) Production of the kringle fragments of human apolipoprotein(a) by continuous lactose induction strategy. J Biotechnol 108:271–278

    CAS  PubMed  Google Scholar 

  • Lin W-J, Huang S-W, Chou CP (2001) DegP coexpression minimizes inclusion body formation upon overproduction of recombinant penicillin acylase in Escherichia coli. Biotechnol Bioeng 73:484–492

    CAS  PubMed  Google Scholar 

  • Lutz R, Bujard H (1997) Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res 25:1203–1210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Makrides SC (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60:512–538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marinus MG (1973) Location of DNA methylation genes on the Escherichia coli K-12 genetic map. Mol Gen Genet 127:47–55

    CAS  PubMed  Google Scholar 

  • Meevootisom V, Somsuk P, Prachaktam R, Flegel TW (1983) Simple screening method for isolation of penicillin acylase-producing bacteria. Appl Environ Microbiol 46:1227–1229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols JC, Vyas NK, Quiocho FA, Matthews KS (1993) Model of lactose repressor core based on alignment with sugar-binding proteins is concordant with genetic and chemical data. J Biol Chem 268:17602–17612

    CAS  PubMed  Google Scholar 

  • Oh M-K, Liao JC (2000) DNA microarray detection of metabolic responses to protein overproduction in Escherichia coli. Metab Eng 2:201–209

    CAS  PubMed  Google Scholar 

  • Pan K-L, Hsiao H-C, Weng C-L, Wu M-S, Chou CP (2003) Roles of DegP in prevention of protein misfolding in the periplasm upon overexpression of penicillin acylase in Escherichia coli. J Bacteriol 185:3020–3030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Remaut E, Stanssens P, Fiers W (1981) Plasmid vectors for high-efficiency expression controlled by the lpL promoter of coliphage lambda. Gene 15:81–93

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sawano H, Koumoto Y, Ohta K, Sasaki Y, Segawa SI, Tachibana H (1992) Efficient in vitro folding of the 3-disulfide derivatives of hen lysozyme in the presence of glycerol. FEBS Lett 303:11–14

    CAS  PubMed  Google Scholar 

  • Sawyer JR, Schlom J, Kashmiri SVS (1994) The effects of induction conditions on production of a soluble antitumor Sfv in Escherichia coli. Protein Eng 7:1401–1406

    CAS  PubMed  Google Scholar 

  • Scherrer S, Robas N, Zouheiry H, Branlant G, Branlant C (1994) Periplasmic aggregation limits the proteolytic maturation of the Escherichia coli penicillin G amidase precursor polypeptide. Appl Microbiol Biotechnol 42:85–91

    CAS  PubMed  Google Scholar 

  • Schweder T, Lin HY, Jurgen B, Breitenstein A, Riemschneider S, Khalameyzer V, Gupta A, Buttner K, Neubauer P (2002) Role of the general stress response during strong overexpression of a heterologous gene in Escherichia coli. Appl Microbiol Biotechnol 58:330–337

    CAS  PubMed  Google Scholar 

  • Shewale JG, Sivaraman H (1989) Penicillin acylase: enzyme production and its application in the manufacture of 6-APA. Process Biochem 24:146–154

    CAS  Google Scholar 

  • Sizmann D, Keilmann C, Bock A (1990) Primary structure requirements for the maturation in vivo of penicillin acylase from Escherichia coli ATCC 11105. Eur J Biochem 192:143–151

    CAS  PubMed  Google Scholar 

  • Sriubolmas N, Panbangred W, Sriurairatana S, Meevootisom V (1997) Localization and characterization of inclusion bodies in recombinant Escherichia coli cells overproducing penicillin G acylase. Appl Microbiol Biotechnol 47:373–378

    CAS  PubMed  Google Scholar 

  • Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130

    CAS  PubMed  Google Scholar 

  • Tsumoto K, Ejima D, Kumagai I, Arakawa T (2003) Practical considerations in refolding proteins from inclusion bodies. Protein Expr Purif 28:1–8

    CAS  PubMed  Google Scholar 

  • Tunner JR, Robertson CR (1992) Use of glucose starvation to limit growth and induce protein production in Escherichia coli. Biotechnol Bioeng 40:271–279

    CAS  PubMed  Google Scholar 

  • Vila P, Corchero JL, Cubarsi R, Villaverde A (1997) Enhanced fitness of recombinant protein synthesis in the stationary phase of Escherichia coli batch cultures. Biotechnol Lett 19:225–228

    CAS  Google Scholar 

  • Villaverde A, Carrio MM (2003) Protein aggregation in recombinant bacteria: biological role of inclusion bodies. Biotechnol Lett 25:1385–1395

    CAS  PubMed  Google Scholar 

  • Xu Y, Weng C-L, Narayanan N, Hsieh M-Y, Anderson WA, Scharer JM, Moo-Young M, Chou CP (2005) Chaperone-mediated folding and maturation of penicillin acylase precursor in the cytoplasm of Escherichia coli. Appl Environ Microbiol 71:6247–6253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Natural Sciences and Engineering Research Council of Canada and National Science Council of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Perry Chou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Rosenkranz, S., Weng, CL. et al. Characterization of the T7 promoter system for expressing penicillin acylase in Escherichia coli . Appl Microbiol Biotechnol 72, 529–536 (2006). https://doi.org/10.1007/s00253-005-0293-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0293-2

Keywords

Navigation