Skip to main content
Log in

Copolymeric polythioesters by lipase-catalyzed thioesterification and transthioesterification of α,ω-alkanedithiols

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Linear copolymeric polythioesters [PTE; poly(α,ω-alkanedioic acid-co-α,ω-alkanedithiols)] were formed in good yield (∼69%) by thioesterification of 1,12-dodecanedioic acid with 1,6-hexanedithiol and 1,8-octanedithiol, respectively, catalyzed by immobilized lipase from Rhizomucor miehei (Lipozyme RM IM) in vacuo without a solvent. Similarly, transthioesterification (thiolysis) of diethyl 1,12-dodecanedioate with 1,6-hexanedithiol led to the formation of ∼66% PTE. Poly (1,12-dodecanedioic acid-co-1,6-hexanedithiol) and poly (1,12-dodecanedioic acid-co-1,8-octanedithiol) were extracted from the reaction mixture using methyl-t-butylether, precipitated at −20°C and the precipitates extracted with boiling i-hexane to yield two fractions of PTE. The i-hexane-insoluble fraction of poly (1,12-dodecanedioic acid-co-1,6-hexanedithiol) shows an average molecular mass (Mw) of 1,212 Da, corresponding to a molecular weight range of up to 13,200 Da and a degree of polymerization of up to 38 monomer units. The i-hexane-insoluble fraction of poly (1,12-dodecanedioic acid-co-1,8-octanedithiol) shows a Mw of 2,360 Da, corresponding to a molecular weight range of up to 19,500 Da and a maximum degree of polymerization of up to 52 monomer units. The low-molecular weight (<800 Da) reaction products of thioesterification of 1,12-dodecanedioic acid with 1,6-hexanedithiol, elucidated by gas chromatography–mass spectroscopy, show the following intermediates: (1) 9,20-dioxo-1,8-dithiacycloeicosane; (2) 17,28-dioxo-1,8,9,16-tetrathiacyclooctacosane; (3) 1,12-dodecanedioic acid methyl(O)ester 6′-S-mercaptohexyl thio(S)ester; and (4) oligomeric linear thioester, formed by thioesterification of two molecules of 1,12-dodecanedioic acid with one molecule of 1,6-hexanedithiol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bührer HG, Elias H-G (1970) Polythiolester. II. Polythiolactid. Makromol Chem 140:41–54

    Article  Google Scholar 

  • Caussette M, Marty A, Combes D (1997) Enzymatic synthesis of thioesters in non-conventional solvents. J Chem Technol Biotechnol 68:257–262

    Article  CAS  Google Scholar 

  • Cavaille-Lefèbvre D, Combes D (1997) Lipase synthesis of short-chain flavour thioesters in solvent-free medium. Biocatal Biotransform 15:265–279

    Article  Google Scholar 

  • Elbanna K, Lütke-Eversloh T, van Trappen S, Mergaert J, Swings J, Steinbüchel A (2003) Schlegelella thermodepolymerans gen. nov., sp. nov., a novel thermophilic bacterium that degrades poly (3-hydroxybutyrate-co-3-mercaptopropionate). Int J Syst Evol Microbiol 53:1165–1168

    Article  CAS  Google Scholar 

  • Elbanna K, Lütke-Eversloh T, Jendrossek D, Luftmann H, Steinbüchel A (2004) Studies on the biodegradability of polythioester copolymers and homopolymers by polyhydroxyalkanoate (PHA)-degrading bacteria and PHA depolymerases. Arch Microbiol 182:212–225

    Article  CAS  Google Scholar 

  • Elias H-G, Bührer HG (1970) Polythiolester. I. Polythioglykolid. Makromol Chem 140:21–39

    Article  CAS  Google Scholar 

  • Guo ZW, Sih CJ (1988) Enzymic synthesis of macrocyclic lactones. J Am Chem Soc 110:1999–2001

    Article  CAS  Google Scholar 

  • Iwata S, Toshima K, Matsumura S (2003) Enzyme-catalyzed preparation of aliphatic polyesters containing thioester linkages. Macromol Rapid Commun 24:467–471

    Article  CAS  Google Scholar 

  • Kricheldorf HR (1973) Synthese und Polymerisation von 2,4-Dioxo-1,3-dithian. Makromol Chem 173:81–89

    Article  CAS  Google Scholar 

  • Kricheldorf HR, Bösinger K (1973) Über die Polymerisation von 2,5-Dioxo-1,3-oxathiolan und 2,4-Dioxo-1,3-dithiolan. Makromol Chem 173:67–80

    Article  CAS  Google Scholar 

  • Kricheldorf HR, Probst N, Schwarz G, Schulz G, Krüger R-P (2000) New polymer syntheses. 107. Aliphatic poly(thio ester)s by ring-opening polycondensation of 2-stanna-1,3-dithiacycloalkanes. J Polym Sci A Polym Chem 38:3656–3664

    Article  CAS  Google Scholar 

  • Lin KF (1996) Paints, varnishes, and related products. In: Hui YH (ed) Bailey's Industrial Oil and Fat Products, vol 5. Wiley-Interscience, New York, pp 227–274

    Google Scholar 

  • Lütke-Eversloh T, Bergander K, Luftmann H, Steinbüchel A (2001) Identification of a new class of biopolymer: bacterial synthesis of a sulfur-containing polymer with thioester linkages. Microbiology 147:11–19

    Article  Google Scholar 

  • Lütke-Eversloh T, Fischer A, Remminghorst U, Kawada J, Marchessault RH, Bögershausen A, Kalwei M, Eckert H, Reichelt R, Liu S-J, Steinbüchel A (2002) Biosynthesis of novel thermoplastic polythioesters by engineered Escherichia coli. Nat Mater 1:236–240

    Article  Google Scholar 

  • Marvel CS, Kotch A (1951) Polythiolesters. J Am Chem Soc 73:1100–1102

    Article  CAS  Google Scholar 

  • Sanda F, Jirakanjana D, Hitomi M, Endo T (2000) Cationic ring-opening polymerization of ɛ-thionocaprolactone: selective formation of polythioester. J Polym Sci A Polym Chem 38:4057–4061

    Article  CAS  Google Scholar 

  • Schöberl A (1960) Über Polyglykolide. Makromol Chem 37:64–70

    Article  Google Scholar 

  • Spiteller G (1966) Massenspektrometrische Strukturanalyse organischer Verbindungen. Verlag Chemie, Weinheim, p 140

    Google Scholar 

  • Steinbüchel A (2003) Production of rubber-like polymers by microorganisms. Curr Opin Microbiol 6:261–270

    Article  Google Scholar 

  • Uhrich KE (2003) Antibiotic polymers. World Patent WO 03/066053 A1 14 August 2003

  • Weber N, Klein E, Vosmann K, Mukherjee KD (1998) Preparation of long-chain acyl thioesters-thio wax esters-by the use of lipases. Biotechnol Lett 20:687–691

    Article  CAS  Google Scholar 

  • Weber N, Klein E, Mukherjee KD (1999) Long-chain acyl thioesters by solvent-free thioesterification and transthioesterification catalyzed by microbial lipases. Appl Microbiol Biotechnol 51:401–404

    Article  CAS  Google Scholar 

  • Weber N, Klein E, Vosmann K, Mukherjee KD (2000) Antioxidants eliminate stereomutation and thioether formation during lipase-catalyzed thioesterification and transthioesterification for the preparation of uniform cis- and trans-unsaturated thioesters. Chem Phys Lipids 105:215–223

    Article  CAS  Google Scholar 

  • Weber N, Klein E, Vosmann K, Mukherjee KD (2004) Mono-thioesters and di-thioesters by lipase-catalyzed reactions of α,ω-alkanedithiols with palmitic acid or its methyl ester. Appl Microbiol Biotechnol 64:800–805

    Article  CAS  Google Scholar 

  • Zaks A, Klibanov AM (1985) Enzyme-catalysed processes in organic solvents. Proc Natl Acad Sci U S A 82:3192–3196

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, N., Bergander, K., Fehling, E. et al. Copolymeric polythioesters by lipase-catalyzed thioesterification and transthioesterification of α,ω-alkanedithiols. Appl Microbiol Biotechnol 70, 290–297 (2006). https://doi.org/10.1007/s00253-005-027-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-027-5

Keywords

Navigation