Skip to main content
Log in

Production, partial characterization and mass spectrometric studies of the extracellular laccase activity from Fusarium proliferatum

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Benzyl alcohol and starch-free commercial wheat bran were effective inducers of the laccase activity in cultures of Fusarium proliferatum (MUCL 31970). Initial pH value in the cultures was also an overriding factor for increasing its production. By gel permeation high-performance liquid chromatography, the enzyme eluted as an apparently homogeneous peak with a molecular mass of 54 kDa, but by isoelectrofocusing, two proteins with pI values of 5.17 and 5.07 were revealed. Two different phenoloxidase activities were also detected after nondenaturing polyacrylamide gel electrophoresis. By matrix-assisted laser desorption/ionization–time of flight–mass spectrometry (MALDI-TOF-MS), both proteins showed unique fingerprints, so they were classifiable as isozymes, and were named laccase 1 (Lac1, pI 5.17) and laccase 2 (Lac2, pI 5.07). No clear matches were found when compared with other proteins. The tandem mass spectrometry of some peptides from both isozymes reanalyzed by nanoelectron ionization–ion trap–mass spectrometry (nESI-IT-MS) confirmed their unique character. The following interesting properties, particularly its stability at alkaline pH, make this laccase a promising industrial enzyme for biotechnological applications: maximum activity at 60°C, thermal stability for 2 h at 40°C, optimum pH 3.5 (km=62 μM) measured on 2,2′-azino-bis(3-ethylbenz-thiazoline-6-sulfonate), and pH stability 4–8 (75% stability at pH levels 2.2 and 9) for 2 h at 25°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson AJ, Kwon S-I, Carnicero A, Falcón MA (2005) Two isolates of Fusarium proliferatum from different habitats and global locations have similar abilities to degrade lignin. FEMS Microbiol Lett 249:149–155

    CAS  PubMed  Google Scholar 

  • Archibald FS (1992) A new assay for lignin-type peroxidases employing the dye azure B. Appl Environ Microbiol 58:3110–3116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arias ME, Arenas M, Rodríguez J, Soliveri J, Ball AS, Hernández M (2003) Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3355. Appl Environ Microbiol 69(4):1953–1958

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bourbonnais R, Paice MG (1988) Veratryl alcohol oxidase from the lignin-degrading basidiomycete Pleurotus sajor-caju. Biochem J 255:445–450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Camarero S, Savkar S, Ruiz-Dueñas FJ, Martínez MJ, Martinez AT (1999) Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrates interaction sites. J Biol Chem 274:10324–10330

    CAS  PubMed  Google Scholar 

  • Chefetz B, Chen Y, Hadar Y (1998) Purification and characterization of laccase from Chaetonium thermophilium and its role in humification. Appl Environ Microbiol 64:3175–3179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dean JFD, Eriksson KEL (1994) Laccase and the deposition of lignin in vascular plants. Holzforschung (Berl Print) 48:21–33

    CAS  Google Scholar 

  • Denison SH (2000) pH regulation of gene expression in fungi. Fungal Genet Biol 29:61–71

    CAS  PubMed  Google Scholar 

  • Dittmer NT, Suderman RJ, Jiang H, Zhu YC, Gorman MJ, Kramer KJ, Kanost MR (2004) Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae. Insect Biochem Mol Biol 34(1):29–41

    CAS  PubMed  Google Scholar 

  • Dosoretz GD, Chih Chen H, Grethlein HE (1990) Effect of environmental conditions on extracellular protease activity in lignolytic cultures of Phanerochaete chrysosporium. Appl Environ Microbiol 56(2):395–400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esser K, Munith W (1970) The phenoloxidases of the ascomycete Podospora anserina. VI. Genetic regulation of the formation of laccase. Genetics 64:441–458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukushima Y, Kirk TK (1995) Laccase component of the Ceriporiopsissubvermispora lignin-degrading system. Appl Environ Microbiol 61:872–876

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heinzkill M, Bech L, Halkier T, Schneider P, Anke T (1998) Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae). Appl Environ Microbiol 64:1601–1606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández Fernaud JR, Carnicero A, Perestelo F, Hernández Cutuli M, Arias E, Falcón MA (in press) Upgrading of an industrial lignin by using laccase produced by Fusarium proliferatum and different laccase-mediator systems. Enzyme Microb Technol DOI 10.1016/j.enzmictec.2005.01.043

  • Janshekar H, Haltmeier T, Brown C (1982) Fungal degradation of pine and straw alkali lignins. Eur J Appl Microbiol Biotechnol 14:174–181

    CAS  Google Scholar 

  • Jordaan J, Pletschke BI, Leukes WD (2004) Purification and partial characterization of a thermostable laccase from an unidentified basidiomycete. Enzyme Microb Technol 34:635–641

    CAS  Google Scholar 

  • Kersten PJ, Kirk TK (1987) Involvement of a new enzyme, glyoxal oxidase in intracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol 169:2195–2201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk TK, Connors WJ, Zeikus JG (1977) Advances in understanding the microbiological degradation of lignin. In: Wallace JW (ed) Recent advances in phytochemistry. Plenum, New York, pp 369–394

    Google Scholar 

  • Konecny P, Redinbaugh MG (1997) Manual microcolumn chromatography for sample cleanup before mass spectrometry. Biotechniques 22:246–250

    Google Scholar 

  • Kurtz MB, Champe S (1982) Purification and characterization of the conidial laccase of laccase of Aspergillus nidulans. J Bacteriol 151:1338–1345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon S-I, Anderson AJ (2001) Laccase isozyme production by an opportunistic pathogen, a Fusarium proliferatum isolate from wheat. Physiol Mol Plant Pathol 59:235–242

    CAS  Google Scholar 

  • Kwon S-I, Anderson AJ (2002) Genes for multicopper proteins and laccase activity: common features in plant-associated Fusarium isolates. Can J Bot 80:563–570

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Leonowicz A, Cho NM, Luterek L, Wilkolazka A, Wojtas-wasilewska M, Matuszewska A, Hofrichter M, Wesenberg D, Rogalski J (2001) Fungal laccase: properties and activity on lignin. J Basic Microbiol 41:185–227

    CAS  PubMed  Google Scholar 

  • Leontievsky AA, Vares T, Lankinen P, Shergill JK, Pozdnyakova NN, Myasoedova NM, Kalkkinen N, Golovleva LA, Cammack R, Thurston CF, Hatakka A (1997) Blue and yellow laccases of ligninolytic fungi. FEMS Microbiol Lett 156:9–14

    CAS  PubMed  Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565

    CAS  PubMed  Google Scholar 

  • Messerschmidt A, Huber R (1990) The blue oxidases ascorbate oxidase, laccase and ceruloplasmin. Modelling and structural relationships. Eur J Biochem 187:341–352

    CAS  PubMed  Google Scholar 

  • Molitoris HP, Van Breemen JFL, Van Bruggen EFJ, Esser K (1972) The phenoloxidases of the ascomycete Podospora anserina. X. Electron microscopic studies on the structure of laccases I, II and III. Biochem Biophys Acta 271:286–291

    CAS  PubMed  Google Scholar 

  • Ng TB, Wang HX (2004) A homodimeric laccase with unique characteristics from the yellow mushroom Cantharellus cibarius. Biotechnol Lett 16:4–35

    Google Scholar 

  • O'Donnell D, Wang L, Xu J, Ridgway D, Gu T, Moo-Young M (2001) Enhanced heterologous protein production in Aspergillus niger through pH control of extracellular protease activity. Biochem Eng J 8:187–193

    CAS  Google Scholar 

  • Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia G (1997) A novel white laccase from Pleurotus ostreatus. J Biological Chemistry 272:31301–31307

    CAS  Google Scholar 

  • Palonen H, Saloheimo M, Viikari L, Kruus K (2003) Purification, characterization and sequence analysis of a laccase from the ascomycete Mauginiella sp. Enzyme Microb Technol 33:854–862

    CAS  Google Scholar 

  • Parkinson NM, Conyers CM, Keen JN, MacNicoll AD, Smith I, Weaver RJ (2003) cDNAs encoding large venom proteins from the parasitoid wasp Pimpla hypochondriaca identified by random sequence analysis. Comp Biochem Physiol C Toxicol Pharmacol 134:513–520

    PubMed  Google Scholar 

  • Perry CR, Smith M, Britnell CH, Wood DA, Thurston CF (1993) Identification of two laccase genes in the cultivated mushroom Agaricus bisporus. J Gen Microbiol 139:1209–1218

    CAS  PubMed  Google Scholar 

  • Pickard MA, Vandertol H, Roman R, Vazquez-Duhalt R (1999) High production of ligninolytic enzymes from white rot fungi in cereal bran liquid medium. Can J Microbiol 45:627–631

    CAS  Google Scholar 

  • Regalado V (1997) Ph.D. thesis, La Laguna University, Tenerife

  • Regalado V, Rodríguez A, Perestelo F, Carnicero A, De La Fuente LG, Falcón MA (1997) Lignin degradation and modification by the soil-inhabiting fungus Fusarium proliferatum. Appl Environ Microbiol 63:3716–3718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Regalado V, Perestelo F, Rodríguez A, Carnicero A, Sosa FJ, De la Fuente G, Falcón MA (1999) Activated oxygen species and two extracellular enzymes: laccase and aryl-alcohol oxidase, novel for the lignin-degrading fungus Fusarium proliferatum. Appl Microbiol Biotechnol 51:388–390

    CAS  Google Scholar 

  • Reinhammar B (1984) Laccase. In: Lontie L (ed) Copper proteins and copper enzymes. CRC, Boca Raton, pp 1–35

    Google Scholar 

  • Rodríguez A, Carnicero A, Perestelo F, De la Fuente G, Milstein O, Falcón MA (1994) Effect of Penicillium chrysogenum on lignin degradation. Appl Environ microbiol 60:2971–2976

    PubMed  PubMed Central  Google Scholar 

  • Sánchez-Amat A, Lucas-Elio P, Fernández E, García Borrón JC, Solano F (2001) Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterrane. Biochem Biophys Acta 1547:104–116

    PubMed  Google Scholar 

  • Schneider P, Caspersen MB, Mondorf K, Torben H, Skov LK, Østergaard PR, Brown KM, Brown SH, Feng X (1999) Characterization of a Coprinus cinereus laccase. Enzyme Microb Technol 25:502–508

    CAS  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels. Anal Chem 68:850–858

    CAS  PubMed  Google Scholar 

  • Shuttleworth KL, Posti L, Bollag J-M (1986) Production of induced laccase by the fungus Rhizoctonia praticola. Can J Microbiol 32:867–870

    CAS  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccase. Microbiology 140:19–26

    CAS  Google Scholar 

  • Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci U S A 81:2280–2284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfenden BS, Wilson RL (1982) Radical-cations as reference chromogens in kinetic studies of Cro-electron transfer reactions: pulse radiolysis studies of 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulphonate). J Chem Soc Perkin Trans 2:805–812

    Google Scholar 

  • Xu F, Shin W, Brown SH, Wahleithner JA, Sundaram UM, Solomon EI (1996) A study of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity and stability. Biochem Biophys Acta 1292:303–311

    PubMed  Google Scholar 

  • Youn HD, Kim KJ, Maeng JS, Han YH, Jeong IB, Jeong G, Kang SA, Hah YC (1995) Single electron transfer by an extracellular laccase from the white-rot fungus Pleorotus ostreatus. Microbiology 141:393–398

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research has been partially funded by the projects PI 2002/064 (Gobierno Autónomo de Canarias) and REN 2002-02732/TECNO (Ministerio de Ciencia y Tecnología).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Falcón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández Fernaud, J., Marina, A., González, K. et al. Production, partial characterization and mass spectrometric studies of the extracellular laccase activity from Fusarium proliferatum . Appl Microbiol Biotechnol 70, 212–221 (2006). https://doi.org/10.1007/s00253-005-0221-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0221-5

Keywords

Navigation