Skip to main content
Log in

Mutational analysis of the hydantoin hydrolysis pathway in Pseudomonas putida RU-KM3S

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The biocatalytic conversion of 5-mono-substituted hydantoins to the corresponding d-amino acids or l-amino acids involves first the hydrolysis of hydantoin to a N-carbamoylamino acid by an hydantoinase or dihydropyrimidinase, followed by the conversion of the N-carbamoylamino acid to the amino acid by N-carbamylamino acid amidohydrolase (N-carbamoylase). Pseudomonas putida strain RU-KM3S, with high levels of hydantoin-hydrolysing activity, has been shown to exhibit non-stereoselective hydantoinase and l-selective N-carbamoylase activity. This study focused on identifying the hydantoinase and N-carbamoylase-encoding genes in this strain, using transposon mutagenesis and selection for altered growth phenotypes on minimal medium with hydantoin as a nitrogen source. Insertional inactivation of two genes, dhp and bup, encoding a dihydropyrimidinase and β-ureidopropionase, respectively, resulted in loss of hydantoinase and N-carbamoylase activity, indicating that these gene products were responsible for hydantoin hydrolysis in this strain. dhp and bup are linked to an open reading frame encoding a putative transport protein, which probably shares a promoter with bup. Two mutant strains were isolated with increased levels of dihydropyrimidinase but not β-ureidopropionase activity. Transposon mutants in which key elements of the nitrogen regulatory pathway were inactivated were unable to utilize hydantoin or uracil as a nitrogen source. However, these mutations had no effect on either the dihydropyrimidinase or β-ureidopropionase activity. Disruption of the gene encoding dihydrolipoamide succinyltransferase resulted in a significant reduction in the activity of both enzymes, suggesting a role for carbon catabolite repression in the regulation of hydantoin hydrolysis in P. putida RU-KM3S cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abendroth J, Niefind K, May O, Siemann M, Syltdatk C, Schomburg D (2002) The structure of l-hydantoinase from Arthrobacter aurescens leads to an understanding of dihydropyrimidinase substrate and enantio-specificity. Biochemistry 41:8589–8597

    Article  CAS  PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1983) Current protocols in molecular biology, 3rd edn. Wiley, New York

  • Bommarius A, Scharm M, Drauz K (1998) Biocatalysis to amino acid-based chiral pharmaceuticals—examples and perspectives. J Mol Catal B Enzym 5:1–11

    CAS  Google Scholar 

  • Buchanan K, Burton SG, Dorrington RA, Matcher GF, Skepu Z (2001) A novel Pseudomonas putida strain with high levels of hydantoin-converting activity, producing l-amino acids. J Mol Catal B Enzym 11:397–406

    Article  CAS  Google Scholar 

  • Burton SG, Dorrington RA, Hartley C, Kirchmann S, Matcher G, Phehane V (1998) Production of enantiomerically pure amino acids: characterization of South African hydantoinases and hydantoin-producing bacteria. J Mol Catal B Enzym 5:301–305

    Article  CAS  Google Scholar 

  • Buson A, Negro A, Grassato L, Taliaro M, Basaglia M, Grandi C, Fontana A, Nuti M (1996) Identification, sequencing and mutagenesis of the gene for d-carbamoylase from Agrobacterium radiobacter. FEMS Microbiol Lett 145:55–62

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Tsai H (1998) Cloning, sequencing, and expression in Escherichia coli of d-hydantoinase gene from Pseudomonas putida. Ann N Y Acad Sci 864:234–237

    CAS  PubMed  Google Scholar 

  • Cheon Y, Kim H, Han K, Abendroth J, Niefind K, Schomburg D, Wang J, Kim Y (2002) Crystal structure of d-hydantoinase from Bacillus stearothermophilus: an insight into stereochemistry of enantioselectivity. Biochemistry 41:9410–9417

    Article  CAS  PubMed  Google Scholar 

  • Chien H, Jih Y, Yang W, Hsu W (1998) Identification of the open reading frame for the Pseudomonas putida d-hydantoinase gene and expression of the gene in Escherichia coli. Biochim Biophys Acta 1395:68–77

    Article  CAS  PubMed  Google Scholar 

  • Collier DN, Hager PW, Phibbs PV (1996) Catabolite repression control in the pseudomonads. Res Microbiol 147:551–561

    Article  CAS  PubMed  Google Scholar 

  • Dennis J, Zylstra G (1998) Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of gram-negative bacterial genomes. Appl Environ Microbiol 64:2710–2715

    CAS  PubMed  Google Scholar 

  • Eberl L, Ammendola A, Rothballer M, Givskov M, Sternberg C, Kilstrup M, Schleifer K, Molin S (2000) Inactivation of glnB abolishes expression of the assimilatory nitrate reductase gene (nasB) in Pseudomonas putida KT2442. J Bacteriol 182:3368–3376

    Article  CAS  PubMed  Google Scholar 

  • Grifantini R, Galli G, Carpani G, Pratesi C, Frascotti G, Grandi G (1998) Efficient conversion of 5-substituted hydantoins to d-α-amino acids using recombinant Escherichia coli strains. Microbiology 144:947–954

    CAS  PubMed  Google Scholar 

  • Hartley CJ, Kirchmann S, Burton SG, Dorrington RA (1998) Production of d-amino acids from d,l-5-substituted hydantoins by an Agrobacterium tumefaciens strain and isolation of a mutant with inducer-independent expression of hydantoin-hydrolysing activity. Biotechnol Lett 20:707–711

    Article  CAS  Google Scholar 

  • Hartley CJ, Manford F, Burton SG, Dorrington RA (2001) Overproduction of hydantoinase and N-carbamoylase enzymes by regulatory mutants of Agrobacterium tumefaciens. Appl Microbiol Biotechnol 57:43–49

    Article  CAS  PubMed  Google Scholar 

  • Hils M, Munch P, Altenbuchner J, Syldatk C, Mattes R (2001) Cloning and characterization of genes from Agrobacterium sp. IP I-671 involved in hydantoin degradation. Appl Microbiol Biotechnol 57:680–688

    Article  CAS  PubMed  Google Scholar 

  • Ikenaka Y, Nanba H, Yamada Y, Yajima K, Takano M, Takahashi S (1998) Screening, characterization, and cloning of the gene for N-carbamyl-d-amino acid amidohydrolase from thermotolerant soil bacteria. Biosci Biotechnol Biochem 62:882–886

    CAS  PubMed  Google Scholar 

  • Ishikawa T, Watabe K, Mukohara Y, Nakamura H (1996) N-carbamyl-l-amino acid amidohydrolase of Pseudomonas sp. Strain NS671: purification and some properties of the enzyme expressed in Escherichia coli. Biosci Biotechnol Biochem 60:612–615

    CAS  PubMed  Google Scholar 

  • Janssen DB, Drift C van der (1983) Catabolite repression and nitrogen control of allantoin-degrading enzymes in Pseudomonas aeruginosa. Antonie Van Leeuwenhoek 49:501–508

    CAS  PubMed  Google Scholar 

  • Kim G, Park D, Lee H, Ro H, Kim H (1997) Primary structure, sequence analysis and expression of the thermostable d-hydantoinase from Bacillus stearothermophilus SD-1. Mol Gen Genet 255:152–156

    Article  CAS  PubMed  Google Scholar 

  • LaPointe G, Viau S, Leblanc D, Robert N, Morin A (1994) Cloning, sequencing, and overexpression in Escherichia coli of the d-hydantoinase gene from Pseudomonas putida and distribution of homologous genes in other microorganisms. Appl Environ Microbiol 60:888–895

    CAS  PubMed  Google Scholar 

  • Merrick M, Edwards R (1995) Nitrogen control in bacteria. Microbiol Rev 59:604–622

    CAS  PubMed  Google Scholar 

  • Michal G (1999) Biochemical pathways—an atlas of biochemistry and molecular biology. Wiley, New York

  • Miller J (1992) A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Mukohara Y, Ishikawa T, Watabe K, Nakamura H (1994) A thermostable hydantoinase of Bacillus stearothermophilus NS1122A: cloning, sequencing and high expression of the enzyme gene, and some properties of the expressed enzyme. Biosci Biotechnol Biochem 58:1621–1626

    CAS  PubMed  Google Scholar 

  • Ogawa J, Shimizu S (1997) Diversity and versatility of microbial hydantoin-transforming enzymes. J Mol Catal B Enzym 2:163–176

    CAS  Google Scholar 

  • Oh K, Nam S, Kim H (2002) Improvement of oxidative and thermostability of N-carbamyl-d-amino acid amidohydrolase by directed evolution. Protein Eng 15:689–695

    Article  CAS  PubMed  Google Scholar 

  • Palmer JA, Hatter K, Sokatch JR (1991) Cloning and sequence analysis of the LPD-glc structural gene of Pseudomonas putida. J Bacteriol 173:3109–3116

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

  • Syldatk C, Pietzsch M (1995) Hydrolysis and formation of hydantoins. In: Drauz K, Waldmann H (eds) Enzyme catalysis in organic synthesis. VCH, Weinheim, pp 409–431

  • Watabe K, Ishikawa T, Mukohara Y, Nakamura H (1992) Cloning and sequencing of the genes involved in the conversion of 5-substituted hydantoins to the corresponding l-amino acids from the native plasmid of Pseudomonas sp. strain NS671. J Bacteriol 174:962–969

    CAS  PubMed  Google Scholar 

  • Wiese A, Syldatk C, Mattes R, Altenbuchner J (2001) Organisation of genes responsible for the stereospecific conversion of hydantoins to α-amino acids in Arthrobacter aurescens DSM 3747. Arch Microbiol 176:187–196

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by Innovation Fund Grant No. 141141; and G.F.M. was supported by a Rhodes University Henderson Scholarship. The authors wish to acknowledge J.J. Dennis and G. Zylstra for kindly supplying the plasposon vectors, C.J. Hartley, S.A. Clark, and C. Louw for technical assistance, and members of the Rhodes Hydantoinase Research Group for stimulating discussion and constructive advice. The research described in this study was conducted in compliance with the Genetically Modified Organisms Act 15 of 1997[/Sapl4] of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Dorrington.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matcher, G.F., Burton, S.G. & Dorrington, R.A. Mutational analysis of the hydantoin hydrolysis pathway in Pseudomonas putida RU-KM3S . Appl Microbiol Biotechnol 65, 391–400 (2004). https://doi.org/10.1007/s00253-004-1597-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1597-3

Keywords

Navigation